Electrode Charging Effect on Ion Energy Distribution of Dual-Frequency Driven Capacitively Coupled Plasma Etcher

이중 주파수 전원의 용량성 결합 플라즈마 식각장비에서 전극하전에 의한 입사이온 에너지분포 변화연구

  • Choi, Myung-Sun (Department of Energy Systems Engineering, Seoul National University) ;
  • Jang, Yunchang (Department of Energy Systems Engineering, Seoul National University) ;
  • Lee, Seok-Hwan (Department of Energy Systems Engineering, Seoul National University) ;
  • Kim, Gon-Ho (Department of Energy Systems Engineering, Seoul National University)
  • 최명선 (서울대학교 공과대학 에너지시스템공학부) ;
  • 장윤창 (서울대학교 공과대학 에너지시스템공학부) ;
  • 이석환 (서울대학교 공과대학 에너지시스템공학부) ;
  • 김곤호 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2014.09.01
  • Accepted : 2014.09.22
  • Published : 2014.09.30

Abstract

The effect of electrode charging on the ion energy distribution (IED) was investigated in the dual-frequency capacitively coupled plasma source which was powered of 100 MHz RF at the top electrode and 400 kHz bias on the bottom electrode. The charging property was analyzed with the distortion of the measured current and voltage waveforms. The capacitance and the resistance of electrode sheath can change the property of ion and electron charging on the electrode so it is sensitive to the plasma density which is controlled by the main power. The ion energy distribution was estimated by equivalent circuit model, being compared with the measured distribution obtained from the ion energy analyzer. Results show that the low frequency bias power changes effectively the low energy population of ion in the energy distribution.

Keywords

References

  1. H.H. Goto, H.-D. Lowe, T. Ohmi, IEEE Trans. Semicond. Manuf., Vol.6, pp58-64, 1993. https://doi.org/10.1109/66.210658
  2. H.C. Kim, Journal of KSDET, Vol.4, No.2, pp.11-14, 2005.
  3. R. Tsui, Phys. Rev., Vol.168, pp.107-108, 1968. https://doi.org/10.1103/PhysRev.168.107
  4. E. Kawamura, V. Vahedi, Plasma Sources Sci. Technol., Vol.8, pp.R45-R64, 1999. https://doi.org/10.1088/0963-0252/8/3/202
  5. R. Farouki, S. Hamaguchi, M. Dalvie, Phys. Rev. A., Vol.45, pp.5913-5929, 1992. https://doi.org/10.1103/PhysRevA.45.5913
  6. P. Benoit-Cattin, J. Appl. Phys., Vol.39, pp.5723, 1968. https://doi.org/10.1063/1.1656039
  7. J.W. Coburn, J. Appl. Phys., Vol.43, pp.4965, 1972. https://doi.org/10.1063/1.1661054
  8. A. Metze, D. Ernie, H. Oskam, J. Appl. Phys., Vol.60, pp.3081-3087, 1986. https://doi.org/10.1063/1.337764
  9. S.-B. Wang, A. E. Wendt, J. Appl. Phys., Vol.88, pp.643-646, 2000. https://doi.org/10.1063/1.373715
  10. S. Rauf, J. Appl. Phys., Vol.87, pp.7647-7651, 2000. https://doi.org/10.1063/1.373435
  11. A. Agarwal, M.J. Kushner, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., Vol.23, pp.1440-1449, 2005. https://doi.org/10.1116/1.2013318
  12. J.S. Han, J.P. McVittie, J. Zheng, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., Vol.13, pp.1893-1899, 1995. https://doi.org/10.1116/1.587831