DOI QR코드

DOI QR Code

Phase Transition Properties of Ferroelectric Polymer Films

강유전 고분자 박막의 상전이 특성

  • Park, Chul-Woo (Department of Laser and Optical Information Technology, Cheongju University) ;
  • Jung, Chi-Sup (Department of Laser and Optical Information Technology, Cheongju University)
  • 박철우 (청주대학교 레이저광정보공학과) ;
  • 정치섭 (청주대학교 레이저광정보공학과)
  • Received : 2013.12.18
  • Accepted : 2014.01.24
  • Published : 2014.02.01

Abstract

Phase transition properties of the copolymer films of polyvinylidene fluoride (PVDF) and trifluoroethylene(TrFE), P(VDF-TrFE), were studied with X-ray diffraction (XRD) and polarization modulated ellipsometry (PME). XRD studies on both Langmuir-Blodgett (LB) films and spin coated films exhibit conversions from ferroelectric phase to paraelectric phase at $108{\pm}2^{\circ}C$ on heating and paraelectric phase to ferroelectric phase at $78{\pm}2^{\circ}C$ on cooling. The presence of the ferroelectric-paraelectric phase transition is also confirmed by the PME technique for the first time in this study. PME was proved to be a very sensitive tool in the measurement of the structural changes at the nano-thickness films.

Keywords

References

  1. T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, Appl. Phys. Lett., 82, 142 (2003). https://doi.org/10.1063/1.1533844
  2. X. Li, Y. F. Lim, K. Yao, F. Tay, and K. Seah, Phys. Chem. Chem. Phys., 15, 515 (2013). https://doi.org/10.1039/c2cp43873a
  3. M. Bai and S. Ducharme, Appl. Phys. Lett., 85, 3528 (2004). https://doi.org/10.1063/1.1808251
  4. J. Kulek, B. Hilczer, and G. W. Bak, J. Korean Phys. Soc., 32, 1093 (1998).
  5. E. H. Kwak and C. S. Jung, J. KIEEME, 23, 566 (2010).
  6. M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, J. Appl. Phys., 66, 3241 (1989). https://doi.org/10.1063/1.344115
  7. D. Jungbauer, B. Reck, R. Twieg, D. Y. Yoon, C. G. Willson, and J. D. Swalen, Appl. Phys. Lett., 56, 2610 (1990). https://doi.org/10.1063/1.102853
  8. P. M. Ranon, Y. Shi, and W. H. Steier, Appl. Phys. Lett., 62, 2605 (1993). https://doi.org/10.1063/1.109285
  9. K. D. Singer, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett., 49, 248 (1986). https://doi.org/10.1063/1.97184
  10. S. Ducharme, T. J. Reece, C. M. Othon, and R. K. Rannow, IEEE Trans. Dev. Mater. Reliab., 5, 720 (2005). https://doi.org/10.1109/TDMR.2005.860818
  11. S. P. Palto, L. Blinov, A. Bune, E. Duvovik, V. Fridkin, N. Petukhova, K. Verhovskaya, and S. S. Yudin, Ferro. Lett., 19, 65 (1995). https://doi.org/10.1080/07315179508204276
  12. S. Ducharme, S. P. Palto, L. M. Blinov, and V. M. Fridkin, AIP Conf. Proc., 535, 354 (2000).
  13. L. M. Blinov, V. M. Fridkin, S. P. Palto, A. V. Bune, Peter A. Dowben, and S. Ducharme, Phys. Uspekhi., 43, 243 (2000). https://doi.org/10.1070/PU2000v043n03ABEH000639
  14. J. H. Kim, Ph. D. Thesis, p. 92, Nebraska University, Lincoln (2008).
  15. A. Navid and L. Pilon, Smart Mater. Struct., 20, 9 (2011).
  16. C. S. Jung, I. T. Lee, P. W. Jang, K. Seomoon, and K. H. Kim, J. Nanosci. Nanotechnol., 12, 3326 (2012). https://doi.org/10.1166/jnn.2012.5604
  17. Y. G. Fokin, T. V. Misuyaev, T. V. Murinza, S. P. Palto, N. N. Petukhova, S. G. Yudin, and O. A. Aktsipetrov, Surf. Sci., 507/510, 719 (2002). https://doi.org/10.1016/S0039-6028(02)01342-0
  18. H. S. Han, H. S. jeon, G. G. Lee, K. J. Kim, and B. E. Park, J. Korean. Phys. Soc., 55, 898 (2009). https://doi.org/10.3938/jkps.55.898
  19. M. Poulsen, A. V. Sorokin, S. Adenwalla, S. Ducharme, and V. M. Fridkin, J. Appl. Phys., 103, 034116 (2008). https://doi.org/10.1063/1.2838484
  20. E. H. Kwak, J. H. Lee, and C. S. Jung, J. Ind. Sci. Cheongju Univ, 2 (2009).
  21. A. R. Geivandov, S. G. Yudin, V. M. Fridkin, and S. Ducharme, Phys. Solid State, 47, 1950 (2005).
  22. M. Bai, M. Poulsen, and S. Ducharme, J. Appl. Phys, Matt., 18, 7383 (2006). https://doi.org/10.1088/0953-8984/18/31/030