DOI QR코드

DOI QR Code

Modeling Future Yield and Irrigation Demand of Rice Paddy in Korea

우리나라 미래의 논 벼 생산량과 관개요구량 모델링

  • Received : 2013.10.07
  • Accepted : 2013.12.16
  • Published : 2014.01.31

Abstract

기후변화에 따른 기온상승과 강우패턴의 변화에 의한 농업의 취약성에 대한 연구는 주요 관심분야이다. 본 연구에서 기후변화가 한국의 2021~2040 (2030s), 2051~2070 (2060s) 및 2081~2100 (2090s)의 벼의 생산량과 관개요구량에 미치는 영향을 모의발생하여 분석 하였다. 세 가지 대표농도경로 (Representative Concentration Pathways: RCPs)에 대한 12개의 전지구 기후모형이 추정한 기후자료로부터 미래의 작물 물 요구량, 유효강우량, 관개요구량을 물수지 방법으로 계산하였다. Water Accounting Rice Model (WARM) 벼 작물모형을 보정하여 벼 생산량 추정에 이용하였다. 벼 생산량은 금세기 말에는 최대 40 %까지 감소하는 것으로 나타났다. 생산량은 특히 경남과 충남지방에서 크게 증가하는 것으로 나타났다. 생산량과 관개요구량의 시공간적인 불확실성을 분석한 바, 경북과 전남에서 2090s, RCP8.5때 불확실성이 가장 큰 것으로 나타났다. 미래에 일부 지역은 벼농사에 적합하지 않을 수도 있을 것으로 추정되었으며 기후변화 대응방안에 대한 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Angulo, C., R. Rotter, R. Lock, A. Enders, S. Fronzek, and F. Ewert, 2013. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology 170: 32-46. https://doi.org/10.1016/j.agrformet.2012.11.017
  2. Asseng, S., F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, and J. R. Williams, 2013. Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3: 827-832. https://doi.org/10.1038/nclimate1916
  3. Chung, S.-O., 2013. "Projecting Future Paddy Irrigation Demands in Korea." Irrigation and Drainage 62(3): 297-305. https://doi.org/10.1002/ird.1711
  4. Chung, S. O., and T. Nkomozepi, 2012. Uncertainty of paddy irrigation requirement estimated from climate change in the Geumho river basin, Korea. Paddy and Water Environment 10(3): 175-185. https://doi.org/10.1007/s10333-011-0305-z
  5. Confalonieri R., D., Gusberti and M. Acutis, 2006. Comparison of WOFOST, CropSyst and WARM for simulating rice growth (Japonica type - short cycle varieties). Italian Journal of Agrometeorology 11-3: 7-16.
  6. Confalonieri, R., G. Bellocchi, S. Bregaglio, M. Donatelli, and M. Acutis, 2010. Comparison of sensitivity analysis techniques: a case study with the rice model WARM." Ecological Modelling 221(16): 1897-1906. https://doi.org/10.1016/j.ecolmodel.2010.04.021
  7. Confalonieri, R., M. Acutis, G. Bellocchi, and M. Donatelli, 2009. Multi-metric evaluation of the models WARM, CropSyst, and WOFOST for rice. Ecological Modelling 220(11): 1395-1410. https://doi.org/10.1016/j.ecolmodel.2009.02.017
  8. Dastane, N. G., 1978. "Effective Rainfall in Irrigated Agriculture. FAO Irrigation and Drainage Paper No. 25." Food and Agriculture Organization (FAO), Rome, Italy, 67pp.
  9. Djaman, K., and S. Irmak, 2013. Actual Crop Evapotranspiration and Alfalfa- and Grass-Reference Crop Coefficients of Maize under Full and Limited Irrigation and Rainfed Conditions. Journal of Irrigation and Drainage Engineering 139(6): 433-446. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000559
  10. Guerra, L., S. I. Bhuiyan, T. P. Tuong, and R. Barker, 1998. Producing more rice with less water. SWIM Paper 5. Colombo, Sri Lank: International Water Management Institute, 4-6.
  11. Jang, M.-W., J.-Y. Choi, J.-J. Lee, 2007. A spatial reasoning approach to estimating paddy rice water demand in Hwanghaenam-do, North Korea. Agricultural water management 89: 185-198. https://doi.org/10.1016/j.agwat.2007.01.009
  12. Kim, H. K., P. B. Parajuli, and S. D. Filip To, 2013. Assessing impacts of bioenergy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agricultural and Forest Meteorology 169: 61-73. https://doi.org/10.1016/j.agrformet.2012.10.007
  13. Kim, H. Y., T. Horie, H. Nakagawa, and K. Wada, 1996. Effects of elevated $CO_{2}$ concentration and high temperature on growth and yield of rice [Oryza sativa], 2: The effect on yield and its components of Akihikari rice. Japanese Journal of Crop Science 65(4): 644-651. https://doi.org/10.1626/jcs.65.644
  14. Kim, J., J. Shon, C.K. Lee, W. Yang, Y. Yoon, W.H. Yang, and B.W. Lee, 2011. "Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research 122(3): 207-213. https://doi.org/10.1016/j.fcr.2011.03.014
  15. Ledbetter R., C. Prudhomme, and N. Arnell, 2012. A method for incorporating climate variability in climate change impact assessments: Sensitivity of river flows in the Eden catchment to precipitation scenarios." Climatic Change 113(3-4): 803-823. https://doi.org/10.1007/s10584-011-0386-0
  16. Lupia, F., 2013. ETo-PM version 0.9. http://dspace. inea.it, accessed 4 July, 2013.
  17. Masoud, P., Yazdi, A. B., S. Araghinejad, A. P. Nejadhashemi, and M. S. Tabrizi, 2013. Optimal water allocation in irrigation networks based on real time climatic data. Agricultural Water Management 117: 1-8. https://doi.org/10.1016/j.agwat.2012.10.025
  18. Masutomi, Y., K. Takahashi, H. Harasawa, and Y. Matsuoka, 2009. Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models.
  19. Mehta, V. K., V. R. Haden, B. A. Joyce, D. R. Purkey, and L. E. Jackson, (2013), "Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California." Agricultural Water Management 117: 70-82. https://doi.org/10.1016/j.agwat.2012.10.021
  20. Semenov, M. A., R. A. C. Mitchell, A. P. Whitmore, M. J. Hawkesford, M. A. J. Parry, and P.R. Shewry, 2012. Shortcomings in wheat yield predictions. Nature Climate Change 2(6): 380-382. https://doi.org/10.1038/nclimate1511
  21. Supit, I., C. A. Van Diepen, A. J. W. De Wit, J. Wolf, P. Kabat, B. Baruth, and F. Ludwig, 2012. Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agricultural and Forest Meteorology 164:96-111. https://doi.org/10.1016/j.agrformet.2012.05.005
  22. Tallec, T., P. Beziat, N. Jarosz, V. Rivalland, and E. Ceschia, 2013. Crops' water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agricultural and Forest Meteorology 168:69-81. https://doi.org/10.1016/j.agrformet.2012.07.008
  23. Van Minnen, J. G., J. Alcamo, and W. Haupt, 2000. Deriving and applying response surface diagrams for evaluating climate change impacts on crop production. Climatic Change 46: 317-338. https://doi.org/10.1023/A:1005651327499
  24. Weatherhead, E. K., and J. W. Knox, 2000. Predicting and mapping the future demand for irrigation water in England and Wales. Agricultural Water Management 43: 203-218. https://doi.org/10.1016/S0378-3774(99)00058-X
  25. Yang, W., H. S. Cho, M. Kim, K. Y. Seong, T. S. Park, M. C. Seo, and H. W. Kang, 2013. "Re-examination of the standard cultivation practices of rice in response to climate change in Korea." Journal of Crop Science and Biotechnology 16(2): 85-92. https://doi.org/10.1007/s12892-013-0006-9
  26. Yoo, S.-H., J.-Y. Choi, S.-H. Lee, Y.-G. Oh, and D.-K. Yun, 2013. Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea. Agricultural Water Management 117: 43-54. https://doi.org/10.1016/j.agwat.2012.10.023
  27. Ziska, L. H., O. Namuco, T. Moya, and J. Quilang, 1997. Growth and Yield Response of Field-Grown Tropical Rice to Increasing Carbon Dioxide and Air Temperature." Agronomy Journal 89: 45-53. https://doi.org/10.2134/agronj1997.00021962008900010007x

Cited by

  1. Projection of Consumptive Use and Irrigation Water for Major Upland Crops using Soil Moisture Model under Climate Change vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.077
  2. Regional-scale rice-yield estimation using stacked auto-encoder with climatic and MODIS data: a case study of South Korea pp.1366-5901, 2018, https://doi.org/10.1080/01431161.2018.1488291