DOI QR코드

DOI QR Code

Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor

마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구

  • 최석현 (국민대학교 기계시스템공학부) ;
  • 황승식 (국민대학교 기계시스템공학부) ;
  • 이희준 (국민대학교 기계시스템공학부)
  • Received : 2013.07.02
  • Accepted : 2013.11.21
  • Published : 2014.02.01

Abstract

Sodium borohydride ($NaBH_4$) is considered as a secure metal hydride for hydrogen storage and supply. In this study, the interfacial friction of two-phase flow in the dehydrogenation of aqueous $NaBH_4$ solution in a microchannel with a hydraulic diameter of $461{\mu}m$ is investigated for designing a dehydrogenation chemical reactor flow passage. Because hydrogen gas is generated by the hydrolysis of $NaBH_4$ in the presence of a ruthenium catalyst, two different flow phases (aqueous $NaBH_4$ solution and hydrogen gas) exist in the channel. For experimental studies, a microchannel was fabricated on a silicon wafer substrate, and 100-nm ruthenium catalyst was deposited on three sides of the channel surface. A bubbly flow pattern was observed. The experimental results indicate that the two-phase multiplier increases linearly with the void fraction, which depends on the initial concentration, reaction rate, and flow residence time.

수소화붕소나트륨은 수소 에너지를 저장 및 공급할 수 있는 안정된 금속 물질이다. 본 논문에서는 탈수소 화학반응기 유로 설계를 위해 수력학적 직경 $461{\mu}m$를 가지는 마이크로채널에서 수소화붕소나트륨 수용액의 탈수소 화학반응이 일어날 때 수용액과 수소 기체 간의 이상유동 계면마찰에 대하여 실험연구를 수행하였다. 화학반응기 마이크로채널은 직사각 단면으로 높이 $300{\mu}m$, 너비 1 mm, 길이 50 mm 로 실리콘 웨이퍼에 공정되었으며, 가수분해 촉진을 위해 루테늄을 촉매로서 100 nm 두께로 채널 표면에 증착하였다. 가시화 결과 Re 수 30 이하에서 기포유동 양상이 관측되었다. 이상마찰승수는 기포율에 선형적으로 비례하며, 탈수소 화학반응기를 설계할 때 계면마찰에 영향을 미치는 수용액의 초기농도, 촉매 화학반응률, 체류시간을 고려해야 된다.

Keywords

References

  1. Cooper, A. C., Campbell, K. M. and Pez, G. P., 2006, "An Integrated Hydrogen Storage and Delivery Approach Using Organic Liquid-phase Carriers," Proc. 16th World Hydrogen Energy Conference, Lyon, France.
  2. David, E., 2005, "An Overview of Advanced Materials for Hydrogen Storage," Journal of Materials Processing Technology, Vol. 162-163, pp. 169-177. https://doi.org/10.1016/j.jmatprotec.2005.02.027
  3. Retnamma, R., Novais, A. Q. and Rangel, C. M., 2011, "Kinetics of Hydrolysis of Sodium Borohydride for Hydrogen Production in Fuel Cell Applications: A Review," Int. J. Hydrogen Energy, Vol. 36, No. 16, pp. 9772-9790. https://doi.org/10.1016/j.ijhydene.2011.04.223
  4. Hung, A., Tsai, S., Hsu, Y., Ku, J., Chen, Y. and Yu, C., 2008, "Kinetics of Sodium Borohydride Hydrolysis Reaction for Hydrogen Generation," Int. J. Hydrogen Energy, Vol. 33, No. 21, pp. 6205-6215. https://doi.org/10.1016/j.ijhydene.2008.07.109
  5. Manoj Kumar Moharana, M. K., Peela, N. R., Khandekar, S. and Kunzru, D., 2011, "Distributed Hydrogen Production from Ethanol in a Microfuel Processor: Issues and Challenges," Renewable and Sustainable Energy Reviews, Vol. 15, pp. 524-533. https://doi.org/10.1016/j.rser.2010.08.011
  6. Kolb, G., 2013, "Review: Microstructured Reactors for Distributed and Renewable Production of Fuels and Electrical Energy," Chemical Engineering and Processing: Process Intensification, Vol. 65, pp. 1-44. https://doi.org/10.1016/j.cep.2012.10.015
  7. Collier, J. G. and Thome, J. R., 1994, Convective Boiling and Condensation, Oxford University Press Inc., New York, pp. 34-54.
  8. Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y. and Hayashi, H., 2002, "Hydrogen Generation Using Sodium Borohydride Solution and Metal Catalyst Coated on Metal Oxide," Int. J. Hydrogen Energy, Vol. 27, No. 10, pp. 1029-1034. https://doi.org/10.1016/S0360-3199(02)00014-9
  9. Bartkus, T. P., Tien, J. S. and Sung, C. -J., 2013, "A Semi-Global Reaction Rate Model Based on Experimental Data for the Self-Hydrolysis Kinetics of Aqueous Sodium Borohydride," Int. J. Hydrogen Energy, Vol. 38, No. 10, pp. 4024-4033. https://doi.org/10.1016/j.ijhydene.2013.01.041
  10. Muir, S. S. and Yao, X., 2011, "Progress in Sodium Borohydride as a Hydrogen Storage Material: Development of Hydrolysis Catalysts and Reaction Systems," Int. J. Hydrogen Energy, Vol. 36, No. 10, pp. 5983-5997. https://doi.org/10.1016/j.ijhydene.2011.02.032
  11. Sim, W., Jo, J., Choi, D., Nam, S. and Park, K., 2010, "Study on the Stability of NaBH4 Solution During Storage Process," J. Korean Chem. Eng. Res., Vol. 48, No. 3, pp. 322-326.
  12. Hartnett, J. P. and Kostic, M., 1989, "Heat transfer to Newtonian and non-Newtonian Fluids in Rectangular Ducts," Adv. Heat Transfer, Vol. 19, No. 16, pp. 247-356. https://doi.org/10.1016/S0065-2717(08)70214-4
  13. Kandlikar, S. G., 2005, "Roughness Effects at Microscale - Reassessing Nikuradse's Experiments on Liquid Flow in Rough Tubes," Bulletin of the Polish Academy of Sciences, Vol. 53, No. 4, pp. 343-349.