DOI QR코드

DOI QR Code

Effect of Surface Roughness on Performance Analysis of Centrifugal Pump for Wastewater Transport

폐수 이송용 원심펌프의 성능해석에서 표면 거칠기의 영향

  • Yun, Jeong-Eui (Dept. of Mechatronics Engineering, Kangwon Nat'l Univ. Samcheok Campus) ;
  • Kim, Joo-Ho (Graduate School of Mechanical & Automation Engineering, Kangwon Nat'l Univ. Samcheok Campus)
  • 윤정의 (강원대학교 삼척캠퍼스 메카트로닉스공학과) ;
  • 김주호 (강원대학교 대학원 기계.자동화공학과)
  • Received : 2013.07.05
  • Accepted : 2013.11.15
  • Published : 2014.02.01

Abstract

This study was performed to evaluate the effect of surface roughness on pump performance. To this end this, using commercial codes, ANSYS CFX and BladeGen, we simulated pump performance in terms of efficiency, head and shaft power, both with and without surface roughness. Finally simulation and experiment results were compared for a quantitative analysis. The results of this comparison showed that surface roughness led to an about 7% reduction in pump efficiency.

본 연구는 폐수처리용 원심 펌프 설계과정에서 수행하는 3차원 유동해석에 있어서 표면 거칠기를 고려한 해석 결과와 고려하지 않은 해석 결과가 성능 예측에 미치는 영향을 살펴보고자 수행하였다. 이를 위해 비교적 기하학적 형상이 복잡한 폐수처리용 원심펌프의 표면 거칠기 변화가 유동 해석 결과에 미치는 영향을 평가하였다. 그리고 실제 해석 대상 펌프를 사용한 실험 결과 값과 해석 결과 값을 서로 비교 해봄으로써 표면 거칠기를 고려한 펌프의 해석 값과 고려하지 않은 해석 결과 값 차이에 대한 정량적인 분석을 제시하였다. 그 결과, 해석 시 표면 거칠기를 고려한 해석결과는 실험결과와 잘 일치하는 함을 보였으며, 표면 거칠기는 펌프의 성능해석에 약 7% 범위에서 영향을 준다는 것을 확인할 수 있었다.

Keywords

References

  1. Yun, J. E. and Kim, J. H., 2013, "Performance Analysis of Centrifugal Pump for Wastewater Transport Considering Surface Roughness," KSME Spring Conference, Vol. 1, pp. 585-589.
  2. Yun, J. E., 2012, "Effects of Impeller Shape of Submersible Non-clogging Pump on its Performance," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 12, pp. 1201-1207. https://doi.org/10.3795/KSME-B.2012.36.12.1201
  3. Yun, J. E., 2012, "Numerical Study of Some Design Parameters of Submersible Double-channel Non-clogging Pump Impeller on Performance," Proc. of 4th Asian Joint Workshop on Thermophysics and Fluid Science.
  4. Yun, J. E., 2012, "Development of High Efficiency Submersible Non-clogging Pump Impeller (I) - High Flow Rate Version," KSME Spring Conference, Vol. 1, pp. 396-400.
  5. Yun, J. E., 2011, "CFD Analysis of Submersible Slurry Pump with Two Blades," Trans. Korean Soc. Mech. Eng. B., Vol. 35, No. 3, pp. 263-268. https://doi.org/10.3795/KSME-B.2011.35.3.263
  6. Kim, S., Choi, Y. S., Yoon, J. Y. and Kim, D. S., 2008, "Design Optimization of Centrifugal Pump Impeller Using DOE," Journal of Fluid Machinery, Vol. 11, No. 3, pp. 36-42. https://doi.org/10.5293/KFMA.2008.11.3.036
  7. Kim, D. J., Suh, S. H. and Sung, S. K., 1988, "Effects of the Impeller Shapes on the Non-Clogging and the Screw-type Centrifugal Pump Performances," Journal of Fluid Machinery, Vol. 1, No. 1, pp. 81-89.
  8. Imaichi, K., Murakami, Y., Tsurusaki, H. and Cho, K. R., 2002, The Basis of Pump Design, Daeyoung Sa.
  9. Stepanoff, A. J., 1957, Centrifugal and Axial Flow Pumps, John Wiley & Sons, Inc., pp. 69-137.
  10. ANSYS CFX, 2009, Release 12.0 User 's guide, Solver theory guide, ANSYS
  11. Ryu, K. S., 2008, Effects of Surface Roughness on Centrifugal Pump Efficiency, Master's Thesis of Chunnam National University, pp. 16-20.

Cited by

  1. Optimum design and performance of marine sea water pump with impeller using CFRP vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7878
  2. CFD Analysis for Optimization of Guide Vane of Axial-Flow Pump vol.40, pp.8, 2016, https://doi.org/10.3795/KSME-B.2016.40.8.519
  3. A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD vol.53, pp.5, 2016, https://doi.org/10.3744/SNAK.2016.53.5.400