DOI QR코드

DOI QR Code

Non-contact Measurement and Analysis of Surface Hardness on Welding Steel using Laser-induced Breakdown Spectroscopy

레이저 유도 플라즈마 분광 기법을 이용한 용접 연강에서의 비접촉 강도 측정과 해석

  • Kim, Joohan (Department of Mechanical and Automotive Engineering, Seoul National Univ. of Science and Tech.) ;
  • Ko, Chansol (Department of Mechanical and Automotive Engineering, Seoul National Univ. of Science and Tech.)
  • 김주한 (서울과학기술대학교 기계.자동차공학과) ;
  • 고찬솔 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2013.12.02
  • Accepted : 2014.01.06
  • Published : 2014.02.01

Abstract

In this work, effects of plasma on different hardness of welding steel using laser-induced breakdown spectroscopy were investigated. The ratios of ionic to atomic spectrum peaks were related to its material hardness. The major spectrum peak (Fe) and minor spectrum peak (Mn) were considered as monitoring elements. The stronger repulse plasma was generated, the harder material it was. The ratios of ionic to atomic spectrum peaks increased with respect to the material hardness as well. The correlation of minor spectrum peaks was stronger than that of major spectrum peaks. However, the major spectrum peaks indicated a similar trend, which could be used to estimate the hardness, too. Based on this result, the method could be used as a non-contact remote measurement of material properties.

Keywords

References

  1. Kang, Y. J., Kim, J. S., Park, S. K., Baik, S. H., and Choi, N. J., "Development of Laser-Based Resonant Ultrasound Spectroscopy (Laser-RUS) System for the Detection of Micro Crack in Materials," J. Korean Soc. Precis. Eng., Vol. 27, No. 1, pp. 41-48, 2010.
  2. Sohn, H., Lee, J. H., Hahn, J. W., and Kim, H. S., "Laser Micro-machining Process-monitoring Technologies," J. Korean Soc. Precis. Eng., Vol. 27, No. 2, pp. 34-39, 2010.
  3. Bulajic, D., Cristoforetti, G., Corsi, M., Hidalgo, M., Legnaioli, S., Palleschi, V., and et al., "Diagnostics of High-Temperature Steel Pipes in Industrial Environment by Laser-Induced Breakdown Spectroscopy Technique: the LIBSGRAIN Project," Spectrochim. Acta. B, Vol. 57, No. 7, pp. 1181-1192, 2002. https://doi.org/10.1016/S0584-8547(02)00060-5
  4. Santagata, A., Teghil, R., Albano, G., Spera, D., Villani, P., and et al., "Fs/ns Dual-pulse LIBS Analytic Survey for Copper-Based Alloys," Appl. Surf. Sci., Vol. 254, No. 4, pp. 863-867, 2007. https://doi.org/10.1016/j.apsusc.2007.07.203
  5. Roberts, D. E., Du Plessis, A., and Botha L. R., "Femtosecond Laser Ablation of Silver Foil with Single and Double Pulses," Appl. Surf. Sci., Vol. 256, No. 6, pp. 1784-1792, 2010. https://doi.org/10.1016/j.apsusc.2009.10.004
  6. Menut, D., Fichet, P., Lacour, J., Rivoallan, A., and Mauchien, P., "Micro-Laser-Induced Breakdown Spectroscopy Technique: A Powerful Method for Performing Quantitative Surface Mapping on Conductive and Nonconductive Samples," Appl. Opt., Vol. 42, No. 30, pp. 6063-6071, 2003. https://doi.org/10.1364/AO.42.006063
  7. Yalcin, S., Orer, S., and Turan, R., "2-D Analysis of Ge Implanted SiO2 Surfaces by Laser-Induced Breakdown Spectroscopy," Spectrochim. Acta. B, Vol. 63, No. 10, pp. 1130-1138, 2008. https://doi.org/10.1016/j.sab.2008.09.002
  8. Yao, S., Lu, J., Chen, K., Pan, S., Li, J., and Dong, M., "Study of Laser-Induced Breakdown Spectroscopy to Discriminate Pearlitic/Ferritic from Martensitic Phases," Appl. Surf. Sci., Vol. 257, No. 7, pp. 3103-3110, 2011. https://doi.org/10.1016/j.apsusc.2010.10.124
  9. Abdel-Salam, Z. A., Nanjing, Z., Anglos, D., and Harith, M. A., "Effect of Experimental Conditions on Surface Hardness Measurements of Calcified Tissues via LIBS," Appl. Phys. B, Vol. 94, No. 1, pp. 141-147, 2009. https://doi.org/10.1007/s00340-008-3304-z
  10. Tsuyuki, K., Miura, S., Idris, N., Kurniawan K. H., Lie, T. J., and Kagawa, K., "Measurement of Concrete Strength Using the Emission Intensity Ratio Between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG Laser-Induced Plasma," Appl. Spectrosc., Vol. 60, No. 1, pp. 61-64, 2006. https://doi.org/10.1366/000370206775382668
  11. Krasniker, R., Bulatov, V., and Schechter, I., "Study of Matrix Effects in Laser Plasma Spectroscopy by Shock wave Propagation," Spectrochim. Acta. B: Atomic Spectroscopy, Vol. 56, No. 6, pp. 609-618, 2001. https://doi.org/10.1016/S0584-8547(01)00194-X
  12. Pardini L., Legnaioli S., Lorenzetti G., Palleschi V., Gaudiuso, R., and et al., "On the Determination of Plasma Electron Number Density from Stark Broadened Hydrogen Balmer Series Lines in Laser- Induced Breakdown Spectroscopy Experiments," Spectrochim. Acta. B: Atomic Spectroscopy, Vol. 88, No. 1, pp. 98-103, 2013. https://doi.org/10.1016/j.sab.2013.05.030
  13. Abdel-Salam, Z. A., Galmed, A. H., Tognoni, E., and Harith, M. A., "Estimation of Calcified Tissues Hardness via Calcium and Magnesium Ionic to Atomic Line Intensity Ratio in Laser Induced Breakdown Spectra," Spectrochim. Acta B, Vol. 62, No. 12, pp. 1343-1347, 2007. https://doi.org/10.1016/j.sab.2007.10.033
  14. Bulajic, D., Corsi, M., Cristoforetti, G., Legnaioli, S., Palleschi, V., and et al., "A Procedure for Correcting Self-Absorption in Calibration Free-Laser Induced Breakdown Spectroscopy," Spectrochim. Acta. B, Vol. 57, No. 2, pp. 339-353, 2002. https://doi.org/10.1016/S0584-8547(01)00398-6
  15. Corsi, M., Gabriele, C., Hidalgo, M., Iriarte D., Legnaioli, S., and et al., "Effect of Laser-Induced Crater Depth in Laser-Induced Breakdown Spectroscopy Emission Features," Appl. Spectrosc., Vol. 59, No. 7, pp. 853-860, 2005. https://doi.org/10.1366/0003702054411607
  16. Zeng, X., Mao, S. S., Liu, C., Mao, X., Greif, R., and Russo, R. E., "Plasma Diagnostics during Laser Ablation in a Cavity," Spectrochim. Acta. B, Vol. 58, No. 5, pp. 867-877, 2003. https://doi.org/10.1016/S0584-8547(03)00021-1