참고문헌
- Addepalli, M. K., Fujita, Y. & Kanai, K. 2002. A monoclonal antibody and the lectin wheat germ agglutinin induce zoospore encystment in Pythium porphyrae, a marine microbial pathogen. Mycologia 94:712-722. https://doi.org/10.2307/3761721
- Aleem, A. A. 1980. Pythium marinum Sparrow (Phycomycetes) infesting Porphyra leucosticta Thuret in the Mediterranean Sea. Bot. Mar. 23:405-407.
- Amano, H., Sakaguchi, K., Maegawa, M. & Noda, H. 1996. The use of a monoclonal antibody for the detection of fungal parasite, Pythium sp., the causative organism of red rot disease, in seawater from Porphyra cultivation farms. Fish. Sci. 62:556-560. https://doi.org/10.2331/fishsci.62.556
- Arasaki, S. 1947. Studies on the rot of Porphyra tenera by a Pythium. Nippon Suisan Gakkaishi 13:74-90 (in Japanese). https://doi.org/10.2331/suisan.13.74
- Arasaki, S. 1960. A chytridean parasite on the Porphyra. Nippon Suisan Gakkaishi 26:543-548 (in Japanese). https://doi.org/10.2331/suisan.26.543
- Arasaki, S., Akino, K. & Tomiyama, T. 1968. A comparison of some physiological aspects in a marine Pythium on the host and on the artificial medium. Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12:203-206 (in Japanese).
- Armstrong, E., Boyd, K. G., Pisacane, A., Peppiatt, C. J. & Burgess, J. G. 2000. Marine microbial natural products in antifouling coatings. Biofouling 16:215-224. https://doi.org/10.1080/08927010009378446
- Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
- Cho, Y. C. & Chang, J. W. 1986. On the disease occurrence of cultured laver (Porphyra tenera Kjellman form. tamatsuensis Miura), and production at the Nokdong laver farming area. Bull. Nat. Fish. Res. Dev. Inst. 39:111-125.
- Ding, H. & Ma, J. 2005. Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J. Appl. Phycol. 17:51-56. https://doi.org/10.1007/s10811-005-5523-6
- Fujita, Y. 1990. Diseases of cultivated Porphyra in Japan. In Akatsuka, I. (Ed.) Introduction to Applied Phycology. SPB Academic Publishing, The Hague, pp. 177-190.
- Fujita, Y. & Zenitani, B. 1976. Studies on pathogenic Pythium of laver red rot in Ariake Sea farm. 1. General mycological characteristics. Nippon Suisan Gakkaishi 42:1183-1188. https://doi.org/10.2331/suisan.42.1183
- Fuller, M. S., Lewis, B. & Cook, P. 1966. Occurrence of Pythium sp. on the marine alga Porphyra. Mycologia 58:313-318. https://doi.org/10.2307/3756970
- Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640. https://doi.org/10.1016/j.tplants.2010.08.005
- Guan, X., Li, J., Zhang, Z., Li, F., Yang, R., Jiang, P. & Qin, S. 2013. Characterizing the microbial culprit of white spot disease of the conchocelis stage of Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 25:1341-1348. https://doi.org/10.1007/s10811-013-9976-8
- Heuner, K. & Steinert, M. 2003. The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int. J. Med. Microbiol. 293:133-143. https://doi.org/10.1078/1438-4221-00259
- Hwang, E. K., Park, C. S. & Kakinuma, M. 2009. Physicochemical responses of Pythium porphyrae (Oomycota), the causative organism of red rot disease in Porphyra to acidification. Aquac. Res. 40:1777-1784. https://doi.org/10.1111/j.1365-2109.2009.02284.x
- Kawamura, Y., Yukoo, K., Tojo, M. & Hishiike, M. 2005. Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyra spp., in the Ariake Sea, Japan. Plant Dis. 89:1041-1047. https://doi.org/10.1094/PD-89-1041
- Kazama, F. & Fuller, M. S. 1970. Ultrastructure of Porphyra perforata infected with Pythium marinum, a marine fungus. Can. J. Bot. 48:2103-2107. https://doi.org/10.1139/b70-304
- Kerwin, J. L., Johnson, L. M., Whisler, H. C. & Tuininga, A. R. 1992. Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70:1017-1024. https://doi.org/10.1139/b92-126
- Klochkova, T. A., Kang, S.-H., Cho, G. Y., Pueschel, C. M., West, J. A. & Kim, G. H. 2006. Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349-358. https://doi.org/10.2216/04-58.1
- Klochkova, T. A., Shim, J. B., Hwang, M. S. & Kim, G. H. 2012. Host-parasite interactions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae. J. Appl. Phycol. 24:135-144. https://doi.org/10.1007/s10811-011-9661-8
- Kuehn, M. J. & Kesty, N. C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19:2645-2655. https://doi.org/10.1101/gad.1299905
- Lee, S. J., Park, S. W., Lee, J. H. & Kim, Y. S. 2012. Diseases of the cultivated Porphyra at Seocheon area. J. Fish Pathol. 25:249-256. https://doi.org/10.7847/jfp.2012.25.3.249
- Le Vesque, C. A. & De Cock, A. W. A. M. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. https://doi.org/10.1017/S0953756204001431
- Liles, M. R., Viswanathan, V. K. & Cianciotto, N. P. 1998. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect. Immun. 66:1776-1782.
- Migita, S. 1969. Olpidiopsis disease of culture Porphyra. Bull. Fac. Fish. Nagasaki Univ. 28:131-145.
- Park, C. S., Kakinuma, M. & Amano, H. 2001a. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR. J. Appl. Phycol. 13:433-441. https://doi.org/10.1023/A:1011982105124
- Park, C. S., Kakinuma, M. & Amano, H. 2001b. Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fish. Sci. 67:197-199. https://doi.org/10.1046/j.1444-2906.2001.00224.x
- Park, C. S., Kakinuma, M. & Amano, H. 2006. Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J. Appl. Phycol. 18:295-299. https://doi.org/10.1007/s10811-006-9031-0
- Park, S.-R., Cho, S.-J., Kim, M.-K., Lim, W.-J., Ryu, S.-K., An, C.-L., Hong, S.-Y., Lee, Y.-H., Kim, B.-K. & Yun, H.-D. 2001c. Characteristics of a marine agarolytic Pseudomonas sp. from Porphyra dentata (Bangiales, Rhodophyta) and some properties of its extracellular agarase. Korean J. Life Sci. 11:291-297.
- Sakaguchi, K., Park, C. S., Kakimura, M. & Amano, H. 2001. Effects of varying temperature, salinity, and acidity in the treatment of Porphyra infected by red rot disease. Aquac. Sci. 49:77-83.
- Sakurai, Y., Akiyama, K. & Sato, S. 1974. On the formation and the discharge of zoospores of Pythium porphyrae in experimental conditions. Bull. Tokohu Reg. Fish. Res. Lab. 33:119-127.
- Sasaki, M. & Sakurai, Y. 1972. Comparative observation on the growth among the five strains in Pythium porphyrae under the same cultural conditions. Bull. Tokohu Reg. Natl. Fish. Res. Inst. 32:83-87.
- Sasaki, M. & Sato, S. 1969. Composition of medium and cultural temperature of Pythium sp., a pathogenic fungus, of the "Akagusare" disease of cultivated Porphyra. Bull. Tokohu Reg. Natl. Fish. Res. Inst. 29:125-132.
- Sekimoto, S., Klochkova, T. A., West, J. A., Beakes, G. W. & Honda, D. 2009. Olpidiopsis bostrychiae sp. nov.: an endoparasitic oomycete that infects Bostrychia and other red algae (Rhodophyta). Phycologia 48:460-472. https://doi.org/10.2216/08-11.1
- Sekimoto, S., Yokoo, K., Kawamura, Y. & Honda, D. 2008. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, Straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). Mycol. Res. 112:361-374. https://doi.org/10.1016/j.mycres.2007.11.002
- Shevchuk, O., Jager, J. & Steinert, M. 2011. Virulence properties of the Legionella pneumophila cell envelope. Front. Microbiol. 2:74.
- Shin, J.-A. 2003a. Inheritance mode of some characters of Porphyra yezoensis (Bangiales, Rhodophyta). II. Yield, photosynthetic pigments content, red rot disease-resistance, color, luster and volatile sulfur compounds concentration. Algae 18:83-88. https://doi.org/10.4490/ALGAE.2003.18.1.083
- Shin, J.-A. 2003b. Yield improvement using recombinant wild-type in Porphyra yezoensis (Bangiales, Rhodophyta). Algae 18:89-94. https://doi.org/10.4490/ALGAE.2003.18.1.089
- Sparrow, F. K. 1934. Observations on marine Phycomycetes collected in Denmark. Dansk. Bot. Ark. 8:1-24.
- Stone, B. J. & Abu Kwaik, Y. 1998. Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect. Immun. 66:1768-1775.
- Sunairi, M., Tsuchiya, H., Tsuchiya, T., Omura, Y., Koyanagi, Y., Ozawa, M., Iwabuchi, N., Murooka, H. & Nakajima, M. 1995. Isolation of a bacterium that causes anaaki disease of the red algae Porphyra yezoensis. J. Appl. Bacteriol. 79:225-229. https://doi.org/10.1111/j.1365-2672.1995.tb00939.x
- Takahashi, M., Ichitani, T. & Sasaki, M. 1977. Pythium porphyrae sp. nov. causing red rot of marine algae Porphyra spp. Trans. Mycol. Soc. Jpn. 18:279-285.
- Tsukidate, J.-I. 1983. On the symbiotic relationship between Porphyra species and attached bacteria, and a bacterial pathogen in white rot. Bull. Nansei Reg. Fish. Res. Lab. 15:29-96.
- Uppalapati, S. R. & Fujita, Y. 2000a. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36:359-366.
- Uppalapati, S. R. & Fujita, Y. 2000b. Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta). Phycol. Res. 48:281-289. https://doi.org/10.1111/j.1440-1835.2000.tb00224.x
- Uppalapati, S. R., Kerwin, J. L. & Fujita, Y. 2001. Epifluorescence and scanning electron microscopy of hostpathogen interactions between Pythium porphyrae (Peronosporales, Oomycota) and Porphyra yezoensis (Bangiales, Rhodophyta). Bot. Mar. 44:139-145.
피인용 문헌
- Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea vol.17, 2016, https://doi.org/10.1016/j.algal.2016.05.023
- Olpidiopsis porphyrae var. koreanae, an endemic endoparasite infecting cultivated Pyropia yezoensis in Korea vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1109-3
- Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers vol.30, pp.3, 2015, https://doi.org/10.4490/algae.2015.30.3.217
- Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin vol.29, pp.1, 2017, https://doi.org/10.1007/s10811-016-0947-8
- Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
- Pathogens of brown algae: culture studies of Anisolpidium ectocarpii and A. rosenvingei reveal that the Anisolpidiales are uniflagellated oomycetes vol.52, pp.2, 2017, https://doi.org/10.1080/09670262.2016.1252857
- New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea vol.28, pp.1, 2016, https://doi.org/10.1007/s10811-015-0595-4
- Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea vol.32, pp.2, 2017, https://doi.org/10.4490/algae.2017.32.5.16
- Not in your usual Top 10: protists that infect plants and algae vol.19, pp.4, 2018, https://doi.org/10.1111/mpp.12580
- Isolation, Morphological Characteristics and Proteomic Profile Analysis of Thermo-tolerant Pyropia yezoensis Mutant in Response to High-temperature Stress pp.2005-7172, 2018, https://doi.org/10.1007/s12601-018-0060-9
- Novel species of the oomycete Olpidiopsis potentially threaten European red algal cultivation pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1641-9
- Molecular Detection of Eukaryotic Diets and Gut Mycobiomes in Two Marine Sediment-Dwelling Worms, Sipunculus nudus and Urechis unicinctus vol.33, pp.3, 2018, https://doi.org/10.1264/jsme2.ME18065
- Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1605-0
- Bacterial community temporal dynamics and disease-related variations in the seawater of Pyropia (laver) seedling pools vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1272-6
- A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota) vol.32, pp.1, 2014, https://doi.org/10.4490/algae.2017.32.2.25
- Chemically-Mediated Interactions Between Macroalgae, Their Fungal Endophytes, and Protistan Pathogens vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.03161
- O gênero Olpidiopsis (Oomycota) no Nordeste do Brasil vol.69, pp.4, 2018, https://doi.org/10.1590/2175-7860201869435
- Compositional Shifts of Bacterial Communities Associated With Pyropia yezoensis and Surrounding Seawater Co-occurring With Red Rot Disease vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01666
- The Environmental Risks Associated With the Development of Seaweed Farming in Europe - Prioritizing Key Knowledge Gaps vol.6, pp.None, 2014, https://doi.org/10.3389/fmars.2019.00107
- Structure and Bioactivities of Porphyrans and Oligoporphyrans vol.25, pp.11, 2019, https://doi.org/10.2174/1381612825666190430111725
- 실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법 vol.25, pp.2, 2014, https://doi.org/10.7837/kosomes.2019.25.2.244
- Characterization of Pythium chondricola associated with red rot disease of Pyropia yezoensis (Ueda) (Bangiales, Rhodophyta) from Lianyungang, China vol.37, pp.3, 2014, https://doi.org/10.1007/s00343-019-8075-3
- Genetic toolkits of the red alga Pyropia tenera against the three most common diseases in Pyropia farms vol.55, pp.4, 2014, https://doi.org/10.1111/jpy.12857
- Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea vol.47, pp.3, 2014, https://doi.org/10.1080/12298093.2019.1625174
- Phyconomy: the extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoi vol.58, pp.5, 2014, https://doi.org/10.1080/00318884.2019.1625632
- Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis vol.20, pp.23, 2014, https://doi.org/10.3390/ijms20235970
- 감태(Ecklonia cava Kjellman) 신품종 개발을 위한 양식 개체군과 자연 개체군의 형태 비교 vol.37, pp.4, 2014, https://doi.org/10.11626/kjeb.2019.37.4.707
- Isolation, identification, carbon utilization profile and control of Pythium graminicola, the causal agent of chilli damping‐off vol.168, pp.2, 2014, https://doi.org/10.1111/jph.12872
- Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities vol.35, pp.1, 2014, https://doi.org/10.4490/algae.2020.35.2.25
- Hidden diversity in the oomycete genus Olpidiopsis is a potential hazard to red algal cultivation and conservation worldwide vol.55, pp.2, 2020, https://doi.org/10.1080/09670262.2019.1664769
- Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.5.14
- The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.6.4
- A review of reported seaweed diseases and pests in aquaculture in Asia vol.51, pp.4, 2014, https://doi.org/10.1111/jwas.12649
- An analysis of the current status and future of biosecurity frameworks for the Indonesian seaweed industry vol.32, pp.4, 2020, https://doi.org/10.1007/s10811-019-02020-3
- Cryopreservation of the parasitic and saprophytic life stage of the blastocladialean pathogen Paraphysoderma sedebokerense infecting the green algae Haematococcus pluvialis and Scenedesmus dimorphus vol.59, pp.6, 2014, https://doi.org/10.1080/00318884.2020.1827825
- Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation vol.32, pp.6, 2014, https://doi.org/10.1007/s10811-020-02274-2
- Discoloration in the marine red algae Pyropia : causative factors and exploiting the biotechnological potential of a waste resource vol.13, pp.2, 2021, https://doi.org/10.1111/raq.12500
- A 20-year retrospective review of global aquaculture vol.591, pp.7851, 2021, https://doi.org/10.1038/s41586-021-03308-6
- Seaweed biosecurity in Tanzania: Lessons to be learned from other major plant crops vol.5, pp.None, 2014, https://doi.org/10.1016/j.envc.2021.100319
- Ice‐Ice disease: An environmentally and microbiologically driven syndrome in tropical seaweed aquaculture vol.14, pp.1, 2014, https://doi.org/10.1111/raq.12606
- Development of an efficiency criterion for the removal of pest organisms (ulvoid green algae and diatoms) from Neopyropia aquaculture using the acid wash (pH shock) method vol.548, pp.p2, 2022, https://doi.org/10.1016/j.aquaculture.2021.737677