DOI QR코드

DOI QR Code

A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact

  • Kim, Gwang Hoon (Department of Biology, Kongju National University) ;
  • Moon, Kyoung-Hyoun (Department of Biology, Kongju National University) ;
  • Kim, Je-Yoon (Department of Biology, Kongju National University) ;
  • Shim, Junbo (National Fisheries Research and Development Institute (NFRDI)) ;
  • Klochkova, Tatyana A. (Kamchatka State Technical University, Petropavlovsk-Kamchatsky)
  • Received : 2014.09.25
  • Accepted : 2014.11.20
  • Published : 2014.12.15

Abstract

As with land crops, cultivated algae are affected by various diseases ranging from large outbreaks of a disease to chronic epiphytes, which may downgrade the value of the final product. The recent development of intensive and dense mariculture practices has enabled some new diseases to spread much faster than before. A new disease is reported almost every year, and the impact of diseases is expected to increase with environmental change, such as global warming. We observed the incidence of diseases in two Pyropia sea farms in Korea from 2011 to 2014, and estimated the economic loss caused by each disease. Serious damage is caused by the oomycete pathogens, Pythium porphyrae and Olpidiopsis spp., which decreased the productivity of the Pyropia sea farms. In Seocheon sea farms, an outbreak of Olpidiopsis spp. disease resulted in approximately US $1.6 million in loss, representing approximately 24.5% of total sales during the 2012-2013 season. The damage caused by green-spot disease was almost as serious as oomycete diseases. An outbreak of green-spot disease in the Seocheon sea farms resulted in approximately US $1.1 million in loss, representing 10.7% of total sales in the 2013-2014 season in this area. However, the causative agent of green-spot disease is still not confirmed. "Diatom felt" is regarded as a minor nuisance that does not cause serious damage in Pyropia; however, our case study showed that the economic loss caused by "diatom felt" might be as serious as that of oomycete diseases. Bacteria and cyanobacteria are indigenous members of epiphytic microbial community on Pyropia blades, but can become opportunistic pathogens under suitable environmental conditions, especially when Pyropia suffers from other diseases. A regular acid wash of the Pyropia cultivation nets is the most common treatment for all of the above mentioned diseases, and represents approximately 30% of the total cost in Pyropia sea farming. However, the acid wash is ineffective for some diseases, especially for Olpidiopsis and bacterial diseases.

Keywords

References

  1. Addepalli, M. K., Fujita, Y. & Kanai, K. 2002. A monoclonal antibody and the lectin wheat germ agglutinin induce zoospore encystment in Pythium porphyrae, a marine microbial pathogen. Mycologia 94:712-722. https://doi.org/10.2307/3761721
  2. Aleem, A. A. 1980. Pythium marinum Sparrow (Phycomycetes) infesting Porphyra leucosticta Thuret in the Mediterranean Sea. Bot. Mar. 23:405-407.
  3. Amano, H., Sakaguchi, K., Maegawa, M. & Noda, H. 1996. The use of a monoclonal antibody for the detection of fungal parasite, Pythium sp., the causative organism of red rot disease, in seawater from Porphyra cultivation farms. Fish. Sci. 62:556-560. https://doi.org/10.2331/fishsci.62.556
  4. Arasaki, S. 1947. Studies on the rot of Porphyra tenera by a Pythium. Nippon Suisan Gakkaishi 13:74-90 (in Japanese). https://doi.org/10.2331/suisan.13.74
  5. Arasaki, S. 1960. A chytridean parasite on the Porphyra. Nippon Suisan Gakkaishi 26:543-548 (in Japanese). https://doi.org/10.2331/suisan.26.543
  6. Arasaki, S., Akino, K. & Tomiyama, T. 1968. A comparison of some physiological aspects in a marine Pythium on the host and on the artificial medium. Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12:203-206 (in Japanese).
  7. Armstrong, E., Boyd, K. G., Pisacane, A., Peppiatt, C. J. & Burgess, J. G. 2000. Marine microbial natural products in antifouling coatings. Biofouling 16:215-224. https://doi.org/10.1080/08927010009378446
  8. Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
  9. Cho, Y. C. & Chang, J. W. 1986. On the disease occurrence of cultured laver (Porphyra tenera Kjellman form. tamatsuensis Miura), and production at the Nokdong laver farming area. Bull. Nat. Fish. Res. Dev. Inst. 39:111-125.
  10. Ding, H. & Ma, J. 2005. Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J. Appl. Phycol. 17:51-56. https://doi.org/10.1007/s10811-005-5523-6
  11. Fujita, Y. 1990. Diseases of cultivated Porphyra in Japan. In Akatsuka, I. (Ed.) Introduction to Applied Phycology. SPB Academic Publishing, The Hague, pp. 177-190.
  12. Fujita, Y. & Zenitani, B. 1976. Studies on pathogenic Pythium of laver red rot in Ariake Sea farm. 1. General mycological characteristics. Nippon Suisan Gakkaishi 42:1183-1188. https://doi.org/10.2331/suisan.42.1183
  13. Fuller, M. S., Lewis, B. & Cook, P. 1966. Occurrence of Pythium sp. on the marine alga Porphyra. Mycologia 58:313-318. https://doi.org/10.2307/3756970
  14. Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640. https://doi.org/10.1016/j.tplants.2010.08.005
  15. Guan, X., Li, J., Zhang, Z., Li, F., Yang, R., Jiang, P. & Qin, S. 2013. Characterizing the microbial culprit of white spot disease of the conchocelis stage of Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 25:1341-1348. https://doi.org/10.1007/s10811-013-9976-8
  16. Heuner, K. & Steinert, M. 2003. The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int. J. Med. Microbiol. 293:133-143. https://doi.org/10.1078/1438-4221-00259
  17. Hwang, E. K., Park, C. S. & Kakinuma, M. 2009. Physicochemical responses of Pythium porphyrae (Oomycota), the causative organism of red rot disease in Porphyra to acidification. Aquac. Res. 40:1777-1784. https://doi.org/10.1111/j.1365-2109.2009.02284.x
  18. Kawamura, Y., Yukoo, K., Tojo, M. & Hishiike, M. 2005. Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyra spp., in the Ariake Sea, Japan. Plant Dis. 89:1041-1047. https://doi.org/10.1094/PD-89-1041
  19. Kazama, F. & Fuller, M. S. 1970. Ultrastructure of Porphyra perforata infected with Pythium marinum, a marine fungus. Can. J. Bot. 48:2103-2107. https://doi.org/10.1139/b70-304
  20. Kerwin, J. L., Johnson, L. M., Whisler, H. C. & Tuininga, A. R. 1992. Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70:1017-1024. https://doi.org/10.1139/b92-126
  21. Klochkova, T. A., Kang, S.-H., Cho, G. Y., Pueschel, C. M., West, J. A. & Kim, G. H. 2006. Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349-358. https://doi.org/10.2216/04-58.1
  22. Klochkova, T. A., Shim, J. B., Hwang, M. S. & Kim, G. H. 2012. Host-parasite interactions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae. J. Appl. Phycol. 24:135-144. https://doi.org/10.1007/s10811-011-9661-8
  23. Kuehn, M. J. & Kesty, N. C. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19:2645-2655. https://doi.org/10.1101/gad.1299905
  24. Lee, S. J., Park, S. W., Lee, J. H. & Kim, Y. S. 2012. Diseases of the cultivated Porphyra at Seocheon area. J. Fish Pathol. 25:249-256. https://doi.org/10.7847/jfp.2012.25.3.249
  25. Le Vesque, C. A. & De Cock, A. W. A. M. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. https://doi.org/10.1017/S0953756204001431
  26. Liles, M. R., Viswanathan, V. K. & Cianciotto, N. P. 1998. Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect. Immun. 66:1776-1782.
  27. Migita, S. 1969. Olpidiopsis disease of culture Porphyra. Bull. Fac. Fish. Nagasaki Univ. 28:131-145.
  28. Park, C. S., Kakinuma, M. & Amano, H. 2001a. Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR. J. Appl. Phycol. 13:433-441. https://doi.org/10.1023/A:1011982105124
  29. Park, C. S., Kakinuma, M. & Amano, H. 2001b. Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fish. Sci. 67:197-199. https://doi.org/10.1046/j.1444-2906.2001.00224.x
  30. Park, C. S., Kakinuma, M. & Amano, H. 2006. Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J. Appl. Phycol. 18:295-299. https://doi.org/10.1007/s10811-006-9031-0
  31. Park, S.-R., Cho, S.-J., Kim, M.-K., Lim, W.-J., Ryu, S.-K., An, C.-L., Hong, S.-Y., Lee, Y.-H., Kim, B.-K. & Yun, H.-D. 2001c. Characteristics of a marine agarolytic Pseudomonas sp. from Porphyra dentata (Bangiales, Rhodophyta) and some properties of its extracellular agarase. Korean J. Life Sci. 11:291-297.
  32. Sakaguchi, K., Park, C. S., Kakimura, M. & Amano, H. 2001. Effects of varying temperature, salinity, and acidity in the treatment of Porphyra infected by red rot disease. Aquac. Sci. 49:77-83.
  33. Sakurai, Y., Akiyama, K. & Sato, S. 1974. On the formation and the discharge of zoospores of Pythium porphyrae in experimental conditions. Bull. Tokohu Reg. Fish. Res. Lab. 33:119-127.
  34. Sasaki, M. & Sakurai, Y. 1972. Comparative observation on the growth among the five strains in Pythium porphyrae under the same cultural conditions. Bull. Tokohu Reg. Natl. Fish. Res. Inst. 32:83-87.
  35. Sasaki, M. & Sato, S. 1969. Composition of medium and cultural temperature of Pythium sp., a pathogenic fungus, of the "Akagusare" disease of cultivated Porphyra. Bull. Tokohu Reg. Natl. Fish. Res. Inst. 29:125-132.
  36. Sekimoto, S., Klochkova, T. A., West, J. A., Beakes, G. W. & Honda, D. 2009. Olpidiopsis bostrychiae sp. nov.: an endoparasitic oomycete that infects Bostrychia and other red algae (Rhodophyta). Phycologia 48:460-472. https://doi.org/10.2216/08-11.1
  37. Sekimoto, S., Yokoo, K., Kawamura, Y. & Honda, D. 2008. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, Straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta). Mycol. Res. 112:361-374. https://doi.org/10.1016/j.mycres.2007.11.002
  38. Shevchuk, O., Jager, J. & Steinert, M. 2011. Virulence properties of the Legionella pneumophila cell envelope. Front. Microbiol. 2:74.
  39. Shin, J.-A. 2003a. Inheritance mode of some characters of Porphyra yezoensis (Bangiales, Rhodophyta). II. Yield, photosynthetic pigments content, red rot disease-resistance, color, luster and volatile sulfur compounds concentration. Algae 18:83-88. https://doi.org/10.4490/ALGAE.2003.18.1.083
  40. Shin, J.-A. 2003b. Yield improvement using recombinant wild-type in Porphyra yezoensis (Bangiales, Rhodophyta). Algae 18:89-94. https://doi.org/10.4490/ALGAE.2003.18.1.089
  41. Sparrow, F. K. 1934. Observations on marine Phycomycetes collected in Denmark. Dansk. Bot. Ark. 8:1-24.
  42. Stone, B. J. & Abu Kwaik, Y. 1998. Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect. Immun. 66:1768-1775.
  43. Sunairi, M., Tsuchiya, H., Tsuchiya, T., Omura, Y., Koyanagi, Y., Ozawa, M., Iwabuchi, N., Murooka, H. & Nakajima, M. 1995. Isolation of a bacterium that causes anaaki disease of the red algae Porphyra yezoensis. J. Appl. Bacteriol. 79:225-229. https://doi.org/10.1111/j.1365-2672.1995.tb00939.x
  44. Takahashi, M., Ichitani, T. & Sasaki, M. 1977. Pythium porphyrae sp. nov. causing red rot of marine algae Porphyra spp. Trans. Mycol. Soc. Jpn. 18:279-285.
  45. Tsukidate, J.-I. 1983. On the symbiotic relationship between Porphyra species and attached bacteria, and a bacterial pathogen in white rot. Bull. Nansei Reg. Fish. Res. Lab. 15:29-96.
  46. Uppalapati, S. R. & Fujita, Y. 2000a. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36:359-366.
  47. Uppalapati, S. R. & Fujita, Y. 2000b. Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta). Phycol. Res. 48:281-289. https://doi.org/10.1111/j.1440-1835.2000.tb00224.x
  48. Uppalapati, S. R., Kerwin, J. L. & Fujita, Y. 2001. Epifluorescence and scanning electron microscopy of hostpathogen interactions between Pythium porphyrae (Peronosporales, Oomycota) and Porphyra yezoensis (Bangiales, Rhodophyta). Bot. Mar. 44:139-145.

Cited by

  1. Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea vol.17, 2016, https://doi.org/10.1016/j.algal.2016.05.023
  2. Olpidiopsis porphyrae var. koreanae, an endemic endoparasite infecting cultivated Pyropia yezoensis in Korea vol.29, pp.4, 2017, https://doi.org/10.1007/s10811-017-1109-3
  3. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers vol.30, pp.3, 2015, https://doi.org/10.4490/algae.2015.30.3.217
  4. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin vol.29, pp.1, 2017, https://doi.org/10.1007/s10811-016-0947-8
  5. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services vol.32, pp.1, 2017, https://doi.org/10.4490/algae.2017.32.3.3
  6. Pathogens of brown algae: culture studies of Anisolpidium ectocarpii and A. rosenvingei reveal that the Anisolpidiales are uniflagellated oomycetes vol.52, pp.2, 2017, https://doi.org/10.1080/09670262.2016.1252857
  7. New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea vol.28, pp.1, 2016, https://doi.org/10.1007/s10811-015-0595-4
  8. Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea vol.32, pp.2, 2017, https://doi.org/10.4490/algae.2017.32.5.16
  9. Not in your usual Top 10: protists that infect plants and algae vol.19, pp.4, 2018, https://doi.org/10.1111/mpp.12580
  10. Isolation, Morphological Characteristics and Proteomic Profile Analysis of Thermo-tolerant Pyropia yezoensis Mutant in Response to High-temperature Stress pp.2005-7172, 2018, https://doi.org/10.1007/s12601-018-0060-9
  11. Novel species of the oomycete Olpidiopsis potentially threaten European red algal cultivation pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1641-9
  12. Molecular Detection of Eukaryotic Diets and Gut Mycobiomes in Two Marine Sediment-Dwelling Worms, Sipunculus nudus and Urechis unicinctus vol.33, pp.3, 2018, https://doi.org/10.1264/jsme2.ME18065
  13. Effect of silicon in Pyropia yezoensis under temperature and irradiance stresses through antioxidant gene expression pp.1573-5176, 2019, https://doi.org/10.1007/s10811-018-1605-0
  14. Bacterial community temporal dynamics and disease-related variations in the seawater of Pyropia (laver) seedling pools vol.30, pp.2, 2018, https://doi.org/10.1007/s10811-017-1272-6
  15. A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota) vol.32, pp.1, 2014, https://doi.org/10.4490/algae.2017.32.2.25
  16. Chemically-Mediated Interactions Between Macroalgae, Their Fungal Endophytes, and Protistan Pathogens vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.03161
  17. O gênero Olpidiopsis (Oomycota) no Nordeste do Brasil vol.69, pp.4, 2018, https://doi.org/10.1590/2175-7860201869435
  18. Compositional Shifts of Bacterial Communities Associated With Pyropia yezoensis and Surrounding Seawater Co-occurring With Red Rot Disease vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01666
  19. The Environmental Risks Associated With the Development of Seaweed Farming in Europe - Prioritizing Key Knowledge Gaps vol.6, pp.None, 2014, https://doi.org/10.3389/fmars.2019.00107
  20. Structure and Bioactivities of Porphyrans and Oligoporphyrans vol.25, pp.11, 2019, https://doi.org/10.2174/1381612825666190430111725
  21. 실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법 vol.25, pp.2, 2014, https://doi.org/10.7837/kosomes.2019.25.2.244
  22. Characterization of Pythium chondricola associated with red rot disease of Pyropia yezoensis (Ueda) (Bangiales, Rhodophyta) from Lianyungang, China vol.37, pp.3, 2014, https://doi.org/10.1007/s00343-019-8075-3
  23. Genetic toolkits of the red alga Pyropia tenera against the three most common diseases in Pyropia farms vol.55, pp.4, 2014, https://doi.org/10.1111/jpy.12857
  24. Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea vol.47, pp.3, 2014, https://doi.org/10.1080/12298093.2019.1625174
  25. Phyconomy: the extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoi vol.58, pp.5, 2014, https://doi.org/10.1080/00318884.2019.1625632
  26. Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis vol.20, pp.23, 2014, https://doi.org/10.3390/ijms20235970
  27. 감태(Ecklonia cava Kjellman) 신품종 개발을 위한 양식 개체군과 자연 개체군의 형태 비교 vol.37, pp.4, 2014, https://doi.org/10.11626/kjeb.2019.37.4.707
  28. Isolation, identification, carbon utilization profile and control of Pythium graminicola, the causal agent of chilli damping‐off vol.168, pp.2, 2014, https://doi.org/10.1111/jph.12872
  29. Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities vol.35, pp.1, 2014, https://doi.org/10.4490/algae.2020.35.2.25
  30. Hidden diversity in the oomycete genus Olpidiopsis is a potential hazard to red algal cultivation and conservation worldwide vol.55, pp.2, 2020, https://doi.org/10.1080/09670262.2019.1664769
  31. Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.5.14
  32. The gene repertoire of Pythium porphyrae (Oomycota) suggests an adapted plant pathogen tackling red algae vol.35, pp.2, 2020, https://doi.org/10.4490/algae.2020.35.6.4
  33. A review of reported seaweed diseases and pests in aquaculture in Asia vol.51, pp.4, 2014, https://doi.org/10.1111/jwas.12649
  34. An analysis of the current status and future of biosecurity frameworks for the Indonesian seaweed industry vol.32, pp.4, 2020, https://doi.org/10.1007/s10811-019-02020-3
  35. Cryopreservation of the parasitic and saprophytic life stage of the blastocladialean pathogen Paraphysoderma sedebokerense infecting the green algae Haematococcus pluvialis and Scenedesmus dimorphus vol.59, pp.6, 2014, https://doi.org/10.1080/00318884.2020.1827825
  36. Control of fouling in the aquaculture of Fucus vesiculosus and Fucus serratus by regular desiccation vol.32, pp.6, 2014, https://doi.org/10.1007/s10811-020-02274-2
  37. Discoloration in the marine red algae Pyropia : causative factors and exploiting the biotechnological potential of a waste resource vol.13, pp.2, 2021, https://doi.org/10.1111/raq.12500
  38. A 20-year retrospective review of global aquaculture vol.591, pp.7851, 2021, https://doi.org/10.1038/s41586-021-03308-6
  39. Seaweed biosecurity in Tanzania: Lessons to be learned from other major plant crops vol.5, pp.None, 2014, https://doi.org/10.1016/j.envc.2021.100319
  40. Ice‐Ice disease: An environmentally and microbiologically driven syndrome in tropical seaweed aquaculture vol.14, pp.1, 2014, https://doi.org/10.1111/raq.12606
  41. Development of an efficiency criterion for the removal of pest organisms (ulvoid green algae and diatoms) from Neopyropia aquaculture using the acid wash (pH shock) method vol.548, pp.p2, 2022, https://doi.org/10.1016/j.aquaculture.2021.737677