DOI QR코드

DOI QR Code

Finite Type Invariants and the Kauffman Bracket Polynomials of Virtual Knots

  • Jeong, Myeong-Ju (Department of Mathematics and Computer Science, Korea Science Academy of KAIST) ;
  • Park, Chan-Young (Department of Mathematics, Kyungpook National University) ;
  • Yeo, Soon Tae (Department of Mathematics, Busan National University)
  • Received : 2013.08.20
  • Accepted : 2013.12.31
  • Published : 2014.12.23

Abstract

In [9], Kauffman introduced virtual knot theory and generalized many classical knot invariants to virtual ones. For example, he extended the Jones polynomials $V_K(t)$ of classical links to the f-polynomials $f_K(A)$ of virtual links by using bracket polynomials. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots. In this paper, we give a necessary condition for a virtual knot invariant to be of finite type by using $t(a_1,{\cdots},a_m)$-sequences of virtual knots. Then we show that the higher derivatives $f_K^{(n)}(a)$ of the f-polynomial $f_K(A)$ of a virtual knot K at any point a are not of finite type unless $n{\leq}1$ and a = 1.

Keywords

References

  1. D. Bar-Natan, On the Vassiliev knot invariant, Topology, 34 (1995), 423-427. https://doi.org/10.1016/0040-9383(95)93237-2
  2. J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math., 111(1993), 225-270. https://doi.org/10.1007/BF01231287
  3. L. Brand, Differential and Difference equations, John Wiley & Sons, Inc., New York, London, Sydney, 1966.
  4. M. Goussarov, M. Polyak and O. Viro, Finite type invariants of classical and virtual knots, Topology, 39(2000), 1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  5. V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc., 12(1985), 103-112. https://doi.org/10.1090/S0273-0979-1985-15304-2
  6. M.-J. Jeong and C.-Y. Park, Vassiliev invariants and double dating tangles, J. of Knot Theory and Its Ramifications, 11(4)(2002), 527-544. https://doi.org/10.1142/S0218216502001809
  7. M.-J. Jeong and C.-Y. Park, Vassiliev invariants and Knot polynomials, Topology and Its Applications, 124(3)(2002), 505-521. https://doi.org/10.1016/S0166-8641(01)00257-7
  8. L. H. Kauffman, State models and the Jones polynomial, Topology, 26(1987), 395-407. https://doi.org/10.1016/0040-9383(87)90009-7
  9. L. H. Kauffman, Virtual knot theory, Europ. J. Combinatorics, 20(1999), 663-691. https://doi.org/10.1006/eujc.1999.0314
  10. H. Murakami, On derivatives of the Jones polynomial, Kobe J. Math., 3(1986), 61-64.
  11. K. Murasugi, Knot Theory and Its Applications, Birkhauser, 1996.
  12. R. Trapp, Twist sequences and Vassiliev invariants, J. Knot Theory and Its Ramif., 3(1994), 391-405. https://doi.org/10.1142/S0218216594000289
  13. V. A. Vassiliev, Cohomology of knot spaces, Theory of Singularities and It's Applications, edited by V. I. Arnold, Advances in Soviet Mathematics, Vol. 1, AMS, 1990.
  14. J. Zhu, On Jones knot invariants and Vassiliev invariants, New Zealand J. Math., 27(1998), 294-299.

Cited by

  1. On Gauss diagrams of periodic virtual knots vol.24, pp.10, 2015, https://doi.org/10.1142/S0218216515400088