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Abstract. In [9], Kauffman introduced virtual knot theory and generalized many classi-

cal knot invariants to virtual ones. For example, he extended the Jones polynomials VK(t)

of classical links to the f–polynomials fK(A) of virtual links by using bracket polynomials.

In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual

knots. In this paper, we give a necessary condition for a virtual knot invariant to be

of finite type by using t(a1, · · · , am)–sequences of virtual knots. Then we show that the

higher derivatives f
(n)
K (a) of the f–polynomial fK(A) of a virtual knot K at any point a

are not of finite type unless n ≤ 1 and a = 1.

1. Introduction

L. H. Kauffman introduced virtual knots, a generalization of knots motivated
from knots in thickened surfaces and abstract properties of Gauss code, by consider-
ing virtual crossings of knot diagrams and introduced graphical finite type invariants
of virtual knots ([9]). In 2000, M. Goussarov, M. Polyak and O. Viro introduced a
different kind of finite type invariants of virtual knots by using semi-virtual cross-
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ings instead of singular points in Vassiliev invariants theory ([4]). For a given knot
diagram, we can characterize it by using a diagram of a circle with some signed
arrows as following. For a diagram of a knot K, consider a diagram of a circle
connected by chords whose endpoints are the double points of the projection of the
knot diagram. Each chord in the Gauss diagram is oriented from the upper strand
to the lower strand in the crossing and it is also equipped with the sign of the corre-
sponding crossing. We call the diagram of the circle the Gauss diagram of the knot
K. We consider a Gauss diagram up to orientation preserving homeomorphism of
the embedding of the underlying circle. See Figure 1.

Throughout this paper we denote the sets of all nonnegative integers, integers
and real numbers by N, Z and R respectively.
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Figure 1

A virtual knot diagram is a knot diagram with classical crossings and virtual
crossings. We denote a virtual crossing by a singular point surrounded by a small
circle as shown in Figure 2. For a virtual knot diagram K, we define its Gauss
diagram G(K) to be the diagram with signed and oriented chords following the
construction of a Gauss diagram for a classical one, disregarding virtual crossings.
See Figure 2 for the Gauss diagram of a virtual knot.

If a knot K is isotopic to another knot K ′ then there is a sequence of moves
from a diagram of K to a diagram of K ′ as shown in Figure 3. We call these moves
Reidemeister moves. We define virtual moves to be the moves of knot diagrams
shown in Figure 4. A sequence of Reidemeister moves and virtual moves are called
a virtual isotopy. A virtual knot is defined to be the virtual isotopy class of a virtual
knot diagram.

Since a Gauss diagram defines a virtual knot diagram up to virtual moves ([4]),
a virtual knot modulo virtual isotopy is equivalent to its Gauss diagram up to the
moves on Gauss diagrams corresponding to the Reidemeister moves and virtual
moves.
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Figure 2

Figure 3

In [9], Kauffman showed that classical knot invariants such as fundamental
groups, crystals, quandles and the bracket polynomials can be extended to virtual
ones that contain all the old topological information about classical knots and are
invariant under the virtual moves, giving new topological information about virtual
knots and links. Kauffman ([9]) and Goussarov, Polyak and Viro ([4]) independently
showed that two classical knots are isotopic if they are virtually isotopic.

A classical knot is an embedding of a circle S1 into the 3-dimensional Euclidean
space R3. We define a long knot to be an embedding of an oriented line R into the
Euclidean space R3. Two long knots are said to be isotopic if there is a smooth
isotopy between them in the class of embeddings. A virtual long knot diagram is an
immersion of the oriented line R into the plane whose double points are real and
virtual crossings as in a virtual knot diagram. Two virtual long knot diagrams are
said to be isotopic if there is a sequence of Reidemeister moves and virtual moves
between them. The isotopy class of a virtual long knot diagram is called a virtual
long knot. We define the Gauss diagram of a virtual long knot as that of a virtual
knot, disregarding all of the virtual crossings.

As a classical link is an embedding of circles S1 into the 3-dimensional Euclidean
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Figure 4

space R3, we can define a virtual link diagram, a virtual link and the Gauss diagram
of a virtual link similarly.

In Section 2, we introduce a t(a1, · · · , am)–sequence of virtual knots induced
from twisting of two parallel strands with some virtual crossings. Then we show
that finite type invariants v of virtual knots of degree n have a polynomial growth
of degree less than or equal to n. In Section 3, we study the extension of the
bracket polynomial of links to virtual ones and its normalized polynomial fK(A)
introduced by Kauffman ([9]). Then by using a t(a1, · · · , am)–sequence of virtual
knots, we show that there are no nontrivial finite type invariants among the higher

derivatives f
(n)
K (a) of the f–polynomial fK(A) at any point a.

2. Finite Type Invariants of Virtual Knots

In [13], Vassiliev introduced finite type invariants of knots and in [2] Birman
and Lin redefined it by using the Vassiliev skein relation. A knot or link invariant
v taking values in an abelian group can be extended to a singular knot or link
invariant by using the Vassiliev skein relation: v(K×) = v(K+) − v(K−), where
K×, K+ and K− are singular knot or link diagrams which are identical except the
indicated local parts in Figure 5 ([1], [2]).

A knot or link invariant v is called a Vassiliev invariant of degree n if n is the
smallest nonnegative integer such that v vanishes on singular knots or links with
more than n double points. A knot or link invariant v is called a Vassiliev invariant
if v is a Vassiliev invariant of degree n for some nonnegative integer n. R. Trapp
showed that a Vassiliev invariant of degree n has a polynomial growth of degree less
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than or equal to n on a twist sequence of knots ([12]). In [8], Kauffman introduced
the bracket polynomial of links by using state models. The bracket polynomial can
be extended for virtual link diagrams with the following recursive formulae ([9]):

(1) < On >= (−A2 − A−2)n−1, where On is a trivial virtual knot diagram with
n components allowed to have some virtual crossings.

(2) < K >= A < K0 > +A−1 < K∞ >,
where K, K0 and K∞ are the virtual link diagrams identical outside of the
shown parts in Figure 6.
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∞ 

Figure 6

The bracket polynomials of virtual link diagrams are invariant under all but the
first Reidemeister move. For an oriented virtual link diagram K, define its writhe
w(K) to be the sum of the crossing signs. The sign of a crossing in an oriented
virtual knot diagram is defined as shown in Figure 7.

We define the f–polynomial fK(A) ([9]) of a virtual link diagram K by the for-
mula fK(A) = (−A3)−w(K) < K >. Then we can easily see that the f–polynomial
is invariant under all of the Reidemeister moves and virtual moves. For a classical
link L, VL(t) = fL(A)|A=t−1/4 is called the Jones polynomial of the link L.
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Figure 7

There are two kinds of finite type invariants for virtual knots ([9], [4]). Kauffman
introduced graphical finite type invariants as following

Definition 2.1. An invariant v of rigid vertex (virtual) 4–valent graphs taking
values in an abelian group is said to be a Vassiliev invariant if it satisfies that

v(G|∗) = v(G|+)− v(G|−),

where (G|∗), (G|+) and (G|−) are oriented graphs identical outside of the shown
parts in Figure 8.

For a graph G we denote the number of vertices by N(G). A Vassiliev invariant
is said to be of graphical finite type n if v(G) = 0 for any graph with N(G) > n.

( | ) G ∗ ( | ) G + ( | ) G − 

Figure 8

For each n, we can get an invariant of graphical finite type n from the f–
polynomial as following ([9]). For the quadruple (K+,K−,K0,K∞) of virtual knots
which are identical except for the part shown in Figure 9, we have{

fK+ = −A−2fK0 −A−4fK∞ ,

fK− = −A+2fK0 −A+4fK∞ .
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Therefore we see that fK+(e
x)−fK−(e

x) is a multiple of x. Inductively we can show
that the coefficient of xn in fG(e

x) vanishes for any rigid vertex (virtual) 4–valent
graph G with N(G) > n. Thus it is of graphical finite type n.
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Figure 9

M. Goussarov, M. Polyak and O. Viro also defined finite type invariants of
virtual knots by using semi-virtual crossings and gave combinatorial presentations
of finite type invariants of low degrees ([4]). We denote the set of virtual knots
by K and the set of Gauss diagrams by D. Consider the free abelian group ZK
generated by the space K of virtual knots. We define a semi-virtual crossing by a
formal relation as shown in Figure 10 and denote it by a real crossing surrounded
by a small circle.

= − 

Figure 10

In the free abelian group generated by the set of Gauss diagrams we denote a
semi-virtual crossing by a dashed arrow as in Figure 11.

Definition 2.2. Let K be the space of virtual knots and ZK be the free abelian
group generated by K. For an abelian group G and for a virtual knot invariant
v : K → G, we extend the invariant v to ZK by linearity. For a natural number n,
if v vanishes for all virtual knots with more than n semi-virtual crossings, then it
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is called an invariant of finite type. The smallest such integer n is called the degree
of v.

Let D be a virtual knot diagram and let {A1, · · · , Am} be disjoint nonempty
sets of crossings of D for a positive integer m. For ϵk = ± (1 ≤ k ≤ m), let
D(Aϵ1

1 , · · · , Aϵm
m ) denote the virtual knot diagram obtained from D by changing all

the crossings in Ak to virtual ones only if ϵk = −. When A is a singleton set {x},
we will denote A = x as usual.

Let D be a virtual knot diagram with crossings x1, x2, · · · , xn. Let v be a finite
type invariant of virtual knots of degree < n. By applying the skein relation for a
finite type invariant of the virtual knots to the semi-virtual knot diagram obtained
from D by making the crossings x1, x2, · · · , xn to the semi–virtual ones, we get the
formula: ∑

ϵi=±
ϵ1 · · · ϵnv(D(x1

ϵ1 , · · · , xn
ϵn)) = 0.

Moreover by using mathematical argument on n, we get the following

Lemma 2.3. Let D be a virtual knot diagram with a collection {A1, · · · , An} of
disjoint nonempty sets of crossings of D. If v is a finite type invariants of virtual
knots of degree < n, then we have∑

ϵi=±
ϵ1 · · · ϵnv(D(A1

ϵ1 , · · · , An
ϵn)) = 0.

Definition 2.4. We fix k distinct points in the closed interval [0, 1], say x1, · · · , xk.
A virtual (k, k)–tangle diagram is a generic immersion of k oriented curves and some
oriented circles into the square [0, 1]2 with the set of endpoints of the curves to be
{(xi, y)|i = 1, · · · , k and y = 0, 1}. The double points of the generic immersion
are real crossings and virtual crossings. Two virtual (k, k)–tangle diagrams T and
S are said to be isotopic if there is a sequence of Reidemeister moves and virtual
moves from T to S. The isotopy class of a (k, k)–tangle diagram is called a virtual
(k, k)–tangle.

For two (k, k)–virtual tangles S and T with the orientations of curves of S near
the upper closed interval [0, 1]×1 and those of the curves of T near the lower closed
interval [0, 1]× 0 are matched, we define the product TS of the two tangles T and S
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to be the virtual tangle obtained by gluing the lower part of the square containing
S and the upper part of the square containing T .

For a virtual (k, k)–tangle T with the orientations of the curves in the upper
part of the square and those of the curves in the lower part of the square are equal,
we define the closure T to be the virtual link obtained from T by attaching k parallel
strands to the endpoints of the curves in the exterior of the square.

Definition 2.5. Let σ, σ−1 and τ be the three virtual tangle as shown in Figure
12. For nonzero integers a1, · · · , am we define the virtual tangle T (a1, · · · , am) by

T (a1, · · · , am) =


σa1τσa2τ · · · τσam if σa1τσa2τ · · · τσam is a two components

virtual link,

σa1τσa2τ · · · τσamτ if σa1τσa2τ · · · τσam is a virtual knot.

τ σ 1 σ − 

Figure 12

Definition 2.6. A sequence {Ki}∞i=0 of virtual knots is called a t(a1, · · · , am)–

sequence if there is a tangle S such that Ki = ST i, where T = T (a1, · · · , am) and
T i = TT · · ·T is the i-times self–product of T for i ∈ N and T 0 denotes the trivial
tangle with the orientation inherited from T .

Throughout this section, unless otherwise stated, we fix anm–tuple (a1, a2, · · · , am)

of nonzero integers and fix a t(a1, · · · , am)–sequence {Ki}∞i=0 such that Ki = ST i

for some tangle S, where T is the tangle T (a1, · · · , am).

Let A be the set of crossings of T . For each fixed Ki, let Tj(0 < j ≤ i) be the
j–th T from the bottom of the diagram of T i and let Aj be the set of crossings in
Tj corresponding to A in T .

For each j ∈ N, define ∆jKi to be the semi-virtual knot obtained from Kj+i by

changing each crossing in
∪j

l=1 Al to a semi-virtual one. Let v be an invariant of
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virtual knots. Define v on {virtual knots}
∪
{∆jKi| i, j ∈ N} by setting

v|{virtual knots} = v,

v(∆0Ki) = v(Ki) and

v(∆jKi) = v̄(∆j−1Ki+1)− v(∆j−1Ki) inductively.

Definition 2.7. Let {ai}∞i=0 be a sequence of numbers, define ∆0ai = ai and
∆n+1ai = ∆nai+1 −∆nai inductively for n ∈ N. The sequence {∆nai}∞i=0 is called
the n-th difference sequence of {ai}∞i=0. A sequence {ai}∞i=0 of numbers is said to
have a polynomial growth if there exist a polynomial f(x) such that ai = f(i) for
all i ∈ N.

The Newton’s formula says that ai =
∑i

j=0

(
i
j

)
∆ja0 ([3]) so the highest order

term of i in the summation is
(
i
n

)
∆na0 if {∆n+1ai} vanishes. Moreover we see that

∆n+1ai = 0 for all i if and only if ai is a polynomial in i of degree ≤ n.

Lemma 2.8. Let v be a virtual knot invariant and let {Ki}∞i=0 be a t(a1, · · · , am)–
sequence of virtual knots. Let T be the tangle T (a1, · · · , am). Let S be a tangle

such that Ki = ST i for each i. Define ∆jKi and v as above. Then for each j ∈ N,
v(∆j(Ki)) = ∆j(v(Ki)).

Proof. We will use the induction argument on j. If j = 0, v(∆0(Ki)) = v(Ki) =
∆0(v(Ki)). Assume that it holds for j = 1, · · · , n − 1. Then v(∆n(Ki)) =
v(∆n−1(Ki+1))− v(∆n−1(Ki)) = ∆n−1(v(Ki+1))−∆n−1(v(Ki))
= ∆n(v(Ki)).

Now we will evaluate v(∆n(Ki)) by resolving the sets of semi-virtual crossings.
For each i ∈ N, Ki = Ki(A

+
1 , A2, · · · , Ai) = Ki+1(A

−
1 , A2, · · · , Ai+1). Then we

have

v(∆1(Ki)) = v(∆0(Ki+1))− v(∆0(Ki))

= v(Ki+1)− v(Ki)

= v(Ki+1(A
+
1 , A2, · · · , Ai+1))− v(Ki+1(A

−
1 , A2, · · · , Ai+1)).

Now we assume that for 1 ≤ j ≤ n the following holds;

v(∆j(Ki)) =
∑
ϵi=±

ϵ1 · · · ϵjv(Kj+i(A1
ϵ1 , · · · , Aj

ϵj , Aj+1, · · · , Aj+i)).

Then we see that

v(∆n+1(Ki))

= v(∆n(Ki+1))− v(∆n(Ki))

=
∑
ϵi=±

ϵ1 · · · ϵnv(Kn+i+1(A1
ϵ1 , · · · , An

ϵn , An+1, · · · , An+i+1))

−
∑
ϵi=±

ϵ1 · · · ϵnv(Kn+i(A1
ϵ1 , · · · , An

ϵn , An+1, · · · , An+i))
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=
∑
ϵi=±

ϵ1 · · · ϵnv(Kn+i+1(A1
ϵ1 , · · · , An

ϵn , A+
n+1, An+2, · · · , An+i+1))

−
∑
ϵi=±

ϵ1 · · · ϵnv(Kn+i+1(A1
ϵ1 , · · · , An

ϵn , A−
n+1, An+2, · · · , An+i+1))

=
∑
ϵi=±

ϵ1 · · · ϵn+1v(Kn+i+1(A1
ϵ1 , · · · , An

ϵn , A
ϵn+1

n+1 , An+2, · · · , An+i+1)).

We have proved the following

Lemma 2.9. Let v be a virtual knot invariant and let {Ki}∞i=0 be a t(a1, · · · , am)–
sequence of virtual knots. Let T be the tangle T (a1, · · · , am) and let S be a tangle

such that Ki = ST i for each i. Then for i = 0, 1, · · · and for n = 1, 2, · · · , we get

v(∆n(Ki)) =
∑
ϵi=±

ϵ1 · · · ϵnv(Kn+i(A1
ϵ1 , · · · , An

ϵn , An+1, · · · , An+i)).

Theorem 2.10. Let {Ki}∞i=0 be a t(a1, · · · , am)–sequence of virtual knots for any
nonzero integers a1, · · · , am. Then any finite type invariant v of virtual knots of
degree n has a polynomial growth on {Ki}∞i=0 of degree ≤ n.

Proof. By the Newton’s formula, it is sufficient to show that ∆n+1v(Ki) = 0, which
comes from Lemmas 2.3, 2.8 and 2.9:

∆n+1v(Ki) = ∆n+1v(Ki)

= v(∆n+1(Ki))

=
∑
ϵi=±

ϵ1 · · · ϵn+1v(Kn+i+1(A1
ϵ1 , · · · , Aϵn+1

n+1 , An+2, · · · , An+i+1))

=
∑
ϵi=±

ϵ1 · · · ϵn+1v(Kn+i+1(A1
ϵ1 , · · · , Aϵn+1

n+1 , An+2, · · · , An+i+1))

= 0.

Theorem 2.10 holds for virtual long knots, when we define finite type invariants
and t(a1, · · · , am)–sequence of virtual long knots in the same way.

3. The f–polynomials and Finite Type Invariants of Virtual Knots

In [2], Birman and Lin showed that the coefficient of xn in the Maclaurin series
of the polynomial VK(ex) in ex is a Vassiliev invariant of type less than or equal
to n, where VK(t) is the Jones polynomial of a knot K ([5]). Therefore we see
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that the n–th derivative V
(n)
K (1) of the Jones polynomial VK(t) of a knot K at 1

is a Vassiliev invariant of degree less than or equal to n. Park and the first author

showed that the n–th derivative V
(n)
K (a) of the Jones polynomial at t = a is not

a Vassiliev invariant for a ̸= 1 ([7]). The Jones polynomial was extended to the
f–polynomial of virtual knots by Kauffman ([9]).

For each n, the coefficient of xn of fK(ex) is of graphical finite type n and so

f
(n)
K (1) is of graphical finite type n. In this section we show that the n–th derivative

f
(n)
K (1) of the f–polynomial fK(A) of a knot at A = 1 is not an invariant of a finite
type for n ≥ 2 by using a t(1)-sequence of virtual knots, following the definition of
finite type invariants introduced by Goussarov, Polyak and Viro.

By using the recursive formula for the f–polynomial to evaluate f
(n)
K (1), we see

that fK(1) = 1 and f ′
K(1) = 0 for all knots K. See Theorem 13 in [9] and refer [10]

for more details.
Let S and T be the tangle diagram as shown in Figure 13. Let Ki be the

diagram of a virtual knot ST i obtained by closing the product ST i of S and T i,
where T i is the i–times self-product of the tangle T for i ≥ 0. In particular K0 and
K1 are trivial virtual knot diagrams.

T S 

Figure 13

Lemma 3.1. We have the following recursive formula of the f–polynomials for the
sequence {Ki}∞i=0 of virtual knots.{

fK0(A) = 1 = fK1(A),

fKi+1(A) = A−4fKi−1(A)−A−6i−4 +A−6i.

Proof. For each natural number i, let Ui be the virtual knot diagram obtained from
the tangle T i as shown in Figure 14.
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Then we can easily see that < Ui >= (−A3)−i. By applying the recursive

formula of the bracket polynomials to a crossing of the diagram Ki+1 = ST i+1, we
have

< Ki+1 > = A < T i > +A−1 < Ui >

= A2 < ST i−1 > + < Ui−1 > +A−1 < Ui >

= A2 < Ki−1 > +(−A3)−i+1 +A−1(−A3)−i

Since fKi(A) = (−A3)−i < Ki > for each i, we have fKi+1(A) = A−4fKi−1(A) −
A−6i−4 +A−6i.

i 
T 

i 
U 

Figure 14

We find a recursive formula for the derivative f
(n)
Ki

(1) of the f–polynomial for
the sequence {Ki}∞i=0 of virtual knots.

Lemma 3.2. With notations as above, for each natural number j we have{
fK2j (A) = A−4j − (A−12j −A−4j)(A2 +A−2)−1 and

fK2j+1(A) = A−4j − (A−12j−6 −A−4j−6)(A2 +A−2)−1.

Proof. From Lemma 3.1, we see that

A2(i+1)fKi+1(A) = A2(i−1)fKi−1(A)−A−4i−2 +A−4i+2.

Put bi = A2ifKi
(A) for each i ∈ N. Then we have bi+1− bi−1 = −A−4i−2+A−4i+2,

b0 = 1 and b1 = A2.
For an even number i = 2j, we have b2j+1 − b2j−1 = −A−8j−2 +A−8j+2. Then

b2j+1 = b1 + (b3 − b1) + · · ·+ (b2j+1 − b2j−1)

= A2 +

j∑
k=1

(−A−8k−2 +A−8k+2)

= A2 +
(1−A−8j)

A6 +A2
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Therefore we have fK2j+1 = 1
A2(2j+1) b2j+1 = A−4j − (A−12j−6 − A−4j−6)(A2 +

A−2)−1.
For an odd natural number i = 2j + 1, we get b2j+2 − b2j = −A−8j−6 + A−8j−2 =

A−4(b2j+1 − b2j−1). Therefore we see that b2j = 1 + 1−A−8j

A2+A−2 and fK2j = A−4j −
(A−12j −A−4j)(A2 +A−2)−1.

By evaluating the growth of the n-th derivative f
(n)
K (1) of the f–polynomial at

A = 1 on the t(1)–sequence {Ki}∞i=0 we get the following

Theorem 3.3. The n-th derivative f
(n)
K (1) of the f–polynomial of a knot K at

A = 1 is not of finite type for n ≥ 2.

Proof. Let n be a fixed integer greater than or equal to 2. From Theorem 2.10,

we see that it is sufficient to show that f
(n)
K (1) does not have a polynomial growth

on the sequence {Ki}∞i=0. Actually, we see that f
(n)
K (1) has polynomial growths

on the two sequences {K2j}∞j=0 and {K2j+1}∞j=0 from Lemma 3.2. However we
show that it does not have a polynomial growth on {Ki}∞i=0. For an integer k and
a positive integer l, we denote the number k(k − 1) · · · (k − l + 1) by P (k, l) and

we also use the convention P (k, 0) = 1. Suppose that the derivative f
(n)
K (1) have

a polynomial growth on {Ki}∞i=0. Then by comparing the n-th derivative of the
formula in Lemma 3.2 at A = 1, we get the equation:

P (−4j, n)− P (−4j + 2, n)

+
∑n

r=0

(
n
r

)(
P (−4j, r)− P (−4j − 4, r)

)
{(A2 +A−2)(−1)}(n−r)|A=1 = 0.

However the coefficient of jn−2 in the left hand side of the above equation is
(−4)n−2(− 1

4 )(3A− 2B −C) = (−4)n−3(−24n2 + 24n) ̸= 0, where A, B, and C are
polynomials in n given as follows;

A =

(n−1∑
k=0

(−k)

)2

−
n−1∑
k=0

(−k)2,

B =

( n−3∑
k=−2

(−k)

)2

−
n−3∑
k=−2

(−k)2 and

C =

(n+3∑
k=4

(−k)

)2

−
n+3∑
k=4

(−k)2.

Since the n-th derivative f
(n)
K (1) of the f–polynomial at A = 1 on the t(1)–sequence

{Ki}∞i=0 does not have a polynomial growth, by Theorem 2.10, f
(n)
K (1) is not a finite

type invariant of virtual knots.
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Since the restriction of a finite type invariant of virtual knots to the set of knots

is a Vassiliev invariant ([4]) and since the derivative V
(n)
K (a) of the Jones polynomial

VK(t) at t = a is not a Vassiliev invariant for a ̸= 1 ([7]), f
(n)
K (a) is not of finite type

for a ̸= 1. Refer [4], [14], [6] and [7] for more details. Hence we get the following

Corollary 3.4. Let fK(A) be the f–polynomial of a virtual knot K. For a natural

number n, the n–th derivative f
(n)
K (a) of the f–polynomial of a virtual knot K at

a point a is of finite type if and only if n ≤ 1 and a = 1.
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