Experimental
Synthesis of 1S. BPM (127 mg, 0.2 mmol) and PBPM (246 mg, 0.15 mmol), which were prepared following literature methods (Supporting Information),13,14 were dissolved in anhydrous DMF (10 mL) under an argon atmosphere. Cesium carbonate (326 mg, 1.0 mmol), tetrakis(triphenyl-phosphine)palladium(0) (23.0 mg, 0.02 mmol), water (2.0 mL), and ethanol (2.0 mL) were added to the solution subsequently. The resulting mixture was heated to 110 ℃ for 48 h. The reaction mixture was cooled to room temperature and the formed precipitate was filtered off and washed with DMF (3 × 20 mL), water (3 ×20 mL), and chloroform (3 × 20 mL). The product was dried under reduced pressure overnight (59.5 mg, 0.19 mmol, 98%).
Synthesis of 1U. BPM (250 mg, 0.39 mmol) was added to a mixture of 2,2'-bipyridyl (320 mg, 2.07 mmol), bis(1,5- cyclooctadiene)nickel(0) (Ni(COD)2, 562.5 mg, 2.07 mmol), and 1,5-cyclooctadiene (COD, 0.25 mL, 2.08 mmol) in anhydrous DMF/THF (20 mL/10 mL). The mixture was stirred at room temperature under argon atmosphere for 48 h. Then, 15 mL of concentrated HCl (12 M) was added dropwise to the deep purple mixture, the mixture was stirred for another 20 h. The solid was collected by filtration, washed with chloroform (3 × 20 mL), water (3 × 20 mL), and THF (3 × 20 mL), and dried in vacuo to give 1U as an offwhite powder (115 mg, 0.37 mmol, 97%).
Synthesis of 1U-NO2. To a two necked round-bottomed flask containing 1U (40.0 mg, 0.131 mmol), 5 M HNO3 (10 mL) was added in small portions under vigorous stirring at room temperature. After the addition was completed, the resulting solution was heated to 50 ℃ for 6 h. Then, the reaction mixture was cooled to room temperature and the precipitate was filtered off and washed with water (100 mL). After drying in vacuum, 1U-NO2 was obtained as a yellow solid (92.0 mg).
References
- Dawson, R.; Cooper, A. I.; Adams, D. J. Progress in Polymer Science 2012, 37, 530. https://doi.org/10.1016/j.progpolymsci.2011.09.002
- (a) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Science 2005, 310, 1166. https://doi.org/10.1126/science.1120411
- (b) Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. J. Am. Chem. Soc. 2007, 129, 12914. https://doi.org/10.1021/ja0751781
- (b) Chun, J.; Park, J. H.; Kim, J.; Lee, S. M.; Kim, H. J.; Son, S. U. Chem. Mater. 2012, 24, 3458. https://doi.org/10.1021/cm301786g
- (c) Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.; Coskun, A. Nature Commun. 2013, 4, 1357. https://doi.org/10.1038/ncomms2359
- (d) Lu, W.; Yuan, D.; Zhao, D.; C. Schilling, C. I.; Plietzsch, O.; Muller, T.; Brase, S.; Guenther, J.; Blümel, J.; Krishna, R.; Li, Z.; Zhou, H. C. Chem. Mater. 2010, 22, 5964. https://doi.org/10.1021/cm1021068
- Holst, J. R.; Cooper, A. I. Adv. Mater. 2010, 22, 5212. https://doi.org/10.1002/adma.201002440
- Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. Int. Ed. 2009, 48, 9457. https://doi.org/10.1002/anie.200904637
- Yuan, D.; Lu, W.; Zhao, D.; Zhou, H. C. Adv. Mater. 2011, 23, 3723. https://doi.org/10.1002/adma.201101759
- Lu, W.; Yuan, D.; Sculley, J.; Zhao, D.; Krishna, R.; Zhou, H.-C. J. Am. Chem. Soc. 2011, 133, 18126. https://doi.org/10.1021/ja2087773
- Konstas, K.; Taylor, J. W.; Thornton, A. W.; Doherty, C. M.; Lim, W. X.; Bastaw, T. J.; Kennedy, D. F.; Wood, C. D.; Cox, B. J.; Hill, J. M.; Hill, A. J.; Hill, M. R. Angew. Chem. Int. Ed. 2012, 51, 6639. https://doi.org/10.1002/anie.201201381
- Lu, W.; Sculley, J. P.; Yuan, D.; Krishna, R.; Wei, Z.; Zhou, H.-C. Angew. Chem. Int. Ed. 2012, 51, 7480. https://doi.org/10.1002/anie.201202176
- Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334. https://doi.org/10.1021/ja801691x
- Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. https://doi.org/10.1021/cr00039a007
- Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121. https://doi.org/10.1002/aic.690110125
- Sumida, K. D.; Rogow, L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Chem. Rev. 2012, 112, 724. https://doi.org/10.1021/cr2003272
- Grimm, M.; Kirste, B.; Kurreck, H. Angew. Chem. Int. Ed. Engl. 1986, 25, 1097. https://doi.org/10.1002/anie.198610971
- Fournier, J. H.; Maris, T.; Wuest, J. D.; Guo, W.; Galoppini, E. J. Am. Chem. Soc. 2003, 125, 1002. https://doi.org/10.1021/ja0276772
Cited by
- Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection vol.141, pp.1, 2016, https://doi.org/10.1039/C5AN01372K
- adsorption: synthesis via the copper-mediated Ullmann homo-coupling polymerization of a nitro-containing monomer vol.7, pp.4, 2016, https://doi.org/10.1039/C5PY01682G
- Porous Aromatic Frameworks (PAFs) vol.120, pp.16, 2014, https://doi.org/10.1021/acs.chemrev.9b00687