DOI QR코드

DOI QR Code

Preparation and Characterization of Anion-Dependent Octahedral Nickel(II) Geometric Isomers

  • Jeong, Ah Rim (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Shin, Jong Won (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Kim, Bong Gon (Department of Chemistry Education, Gyeongsang National University) ;
  • Min, Kil Sik (Department of Chemistry Education and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2013.08.20
  • Accepted : 2013.10.14
  • Published : 2014.01.20

Abstract

Keywords

Experimental

Materials and Measurements. All chemicals used in the synthesis were of reagent grade and used without further purification. N-(2-pyridylmethyl)-iminodiethanol (H2pmide) was prepared according to literature procedures.16 UV/Vis absorption spectra were recorded with a SCINCO S-2100 spectrophotometer. Infrared spectra were recorded with a Thermo Fisher Scientific IR200 spectrophotometer (± 1 cm−1) using KBr disk. Elemental analyses were carried out using a Fissons/Carlo Erba EA1108 instrument. X-ray powder diffraction (XRPD) patterns were measured on a Bruker AXS D2 Phaser X-ray Diffractometer with increments of degree and time step of 0.02° and 0.2 sec/step in 2𝛳. Luminescence spectra were obtained with a SINCO FS-2 fluorescence spectrometer.

Preparation of 1. To an MeCN solution (2 mL) of H2pmide (100 mg, 0.51 mmol) was added an MeCN/MeOH (v/v, 2:1) mixture solution (3 mL) of Ni(NO3)2·6H2O (74 mg, 0.25 mmol), and the color became light violet, and the solution was stirred for 30 min at room temperature. After filtrating, pink crystals were obtained by slow diffusion of diethyl ether into the mixture solution of 1, collected by filtration, and washed with acetonitrile and dried in air. Yield: 129 mg (88%). FT-IR (KBr, cm−1): 3392, 3085, 2975, 1609, 1384, 1068, 1027, 769. UV/Vis (diffuse reflectance spectrum):λmax = 264, 308 (sh), 544, 917 nm. Anal. calcd for C20H32N6NiO10: C, 41.76; H, 5.61; N, 14.61. Found: C, 41.60; H, 5.64; N, 14.37.

Preparation of 2. This complex was obtained as blue crystals in a manner similar to the synthesis of 1 except that NiCl2·6H2O (61 mg, 0.25 mmol) instead of Ni(NO3)2·6H2O was used. Yield: 122 mg (91%). FT-IR (KBr, cm−1): 3357, 3046, 2968, 1609, 1433, 1066, 1028, 780. UV/Vis (diffuse reflectance spectrum):λmax = 264, 304 (sh), 360 (sh), 579, 796 (sh, forbidden), 989 nm. Anal. calcd for C20H32Cl2N4NiO4: C, 46.01; H, 6.18; N,10.73. Found: C, 45.86; H, 6.24; N, 10.79.

Crystal Structure Determination. Single crystals of 1 and 2 were coated with paratone-N oil and the diffraction data measured at 100(2) K with synchrotron radiation (λ = 0.70000 Å) on an ADSC Quantum-210 detector at 2D SMC with a silicon (111) double crystal monochromator (DCM) at the Pohang Accelerator Laboratory, Korea. The ADSC Q210 ADX program17 was used for data collection (detector distance is 63 mm, omega scan; Δω= 1°, exposure time is 1 sec per frame) and HKL3000sm (Ver. 703r)18 was used for cell refinement, reduction and absorption correction. The crystal structures of 1 and 2 were solved by direct methods,19 and refined by full-matrix least-squares refinement using the SHELXL-97 computer program.20 The positions of all nonhydrogen atoms were refined with anisotropic displacement factors. All hydrogen atoms were placed using a riding model, and their positions were constrained relative to their parent atoms using the appropriate HFIX command in SHELXL-97, except the hydrogen atoms of coordinated hydroxyl groups. The crystallographic data and the result of refinements of 1-2 are summarized in Table 2.

Table 2.aR1 = ∑||Fo| − |Fc||/∑ |Fo|. bwR2 = [∑w(Fo2 −Fc2)2/∑w(Fo2)2]1/2.

References

  1. (a) Shin, J. W.; Rowthu, S. R.; Hyun, M. Y.; Song, Y. J.; Kim, C.; Kim, B. G.; Min, K. S. Dalton Trans. 2011, 40, 5762. https://doi.org/10.1039/c1dt10028a
  2. (b) Shin, J. W.; Rowthu, S. R.; Kim, B. G.; Min, K. S. Dalton Trans. 2010, 39, 2765. https://doi.org/10.1039/c000412j
  3. (c) Han, J. H.; Shin, J. W.; Min, K. S. Bull. Korean Chem. Soc. 2009, 30, 1113. https://doi.org/10.5012/bkcs.2009.30.5.1113
  4. (a) Reedijk, J. Chem. Soc. Rev. 2013, 42, 1776. https://doi.org/10.1039/c2cs35239g
  5. (b) Tshuva, E. Y.; Lippard, S. J. Chem. Rev. 2004, 104, 987. https://doi.org/10.1021/cr020622y
  6. (c) Miller, J. S.; Min, K. S. Angew. Chem. Int. Ed. 2009, 48, 262. https://doi.org/10.1002/anie.200705138
  7. (d) Otsuka, S.; Yamanaka, T. Metalloproteins; Chemical Properties and Biological Effects, Elsevier: Amsterdam, 1988; p 285.
  8. (a) Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C. Acc. Chem. Res. 2011, 44, 123. https://doi.org/10.1021/ar100112y
  9. (b) Atolagbe, P. O.; Taylor, K. N.; Wood, S. E.; Rheingold, A. L.; Harper, L. K.; Bayse, C. A.; Brunker, T. J.; Inorg. Chem. 2013, 52, 1170. https://doi.org/10.1021/ic302188y
  10. (c) Gajda, T.; Henry, B.; Delpuech, J.-J. Inorg. Chem. 1997, 36, 1850. https://doi.org/10.1021/ic960832r
  11. Kauffman, G. B. J. Chem. Educ. 1959, 36, 521. https://doi.org/10.1021/ed036p521
  12. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry, 4th ed.; Harper Collins: 1993; Chap. 12.
  13. Shin, J. W.; Rowthu, S. R.; Lee, J. E.; Lee, H. I.; Min, K. S. Polyhedron 2012, 33, 25. https://doi.org/10.1016/j.poly.2011.11.018
  14. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; WILEY: New Jersey, 2009; Part B.
  15. (a) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377. https://doi.org/10.1021/ja034537z
  16. (b) Park, H.; Baus, J. S.; Lindeman, S. V.; Fiedler, A. T. Inorg. Chem. 2011, 50, 11978. https://doi.org/10.1021/ic201115s
  17. (a) Kang, S.-G.; Ryu, K.; Suh, M. P.; Jeong, J. H. Inorg. Chem. 1997, 36, 2478. https://doi.org/10.1021/ic961419m
  18. (b) Mukhopadhyay, S.; Mukhopadhyay, U.; Mak, T. C. W.; Ray, D. Inorg. Chem. 2001, 40, 1057. https://doi.org/10.1021/ic000138i
  19. (a) Aakeroy, C. B. Acta Cryst. 1997, B53, 569.
  20. (b) Archer, E. A.; Sochia, A. E.; Krische, M. J. Chem. Eur. J. 2001, 7, 2059. https://doi.org/10.1002/1521-3765(20010518)7:10<2059::AID-CHEM2059>3.0.CO;2-I
  21. (a) Bruckner, C.; Caulder, D. L.; Raymond, K. N. Inorg. Chem. 1998, 37, 6759. https://doi.org/10.1021/ic980620p
  22. (b) Nishigaki, J.-I.; Matsumoto, T.; Tatsumi, K. Inorg. Chem. 2012, 51, 3690. https://doi.org/10.1021/ic202686x
  23. (a) Baho, N.; Zargarian, D. Inorg. Chem. 2007, 46, 299. https://doi.org/10.1021/ic061311z
  24. (b) Stranger, R.; McMahon, K. L.; Gahan, L. R.; Bruce, J. I.; Hambley, T. W. Inorg. Chem. 1997, 36, 3466. https://doi.org/10.1021/ic9614531
  25. (c) Lever, A. B. P.; Nelson, S. M.; Shepherd, T. M. Inorg. Chem. 1965, 4, 810. https://doi.org/10.1021/ic50028a008
  26. (d) Trueba, A.; Garcia- Fernandez, P.; Garciìa-Lastra, J. M.; Aramburu, J. A.; Barriuso, M. T.; Moreno, M. J. Phys. Chem. A, 2011, 115, 1423. https://doi.org/10.1021/jp110586e
  27. (e) Beissel, T.; Glaser, T.; Kesting, F.; Wieghardt, K.; Nuber, B. Inorg. Chem. 1996, 35, 3936. https://doi.org/10.1021/ic951623u
  28. Shakya, R.; Allard, M. M.; Johann, M.; Heeg, M. J.; Rentschler, E.; Shearer, J. M.; McGarvey, B.; Verani, C. N. Inorg. Chem. 2011, 50, 8356. https://doi.org/10.1021/ic2009368
  29. Figgis, B. N.; Hitchman, M. A. Ligand Field Theory and its Applications; Wiley-VCH: New York, 2000; pp 183-185.
  30. (a) Braverman, M. A.; LaDuca, R. L. Cryst. Growth Des. 2007, 7, 2343. https://doi.org/10.1021/cg070599f
  31. (b) Shyu, E.; Supkowski, R. M.; LaDuca, R. L. Inorg. Chem. 2009, 48, 2723. https://doi.org/10.1021/ic900241q
  32. (c) Prabhakar, M.; Zacharias, P. S.; Das, S. K. Inorg. Chem. 2005, 44, 2585. https://doi.org/10.1021/ic048236h
  33. Wu, C.-C.; Datta, S.; Wernsdorfer, W.; Lee, G.-H.; Hill, S.; Yang, E.-C. Dalton Trans. 2010, 39, 10160. https://doi.org/10.1039/c0dt00405g
  34. Arvai, A. J.; Nielsen, C. ADSC Quantum-210 ADX Program, Area Detector System Corporation; Poway, CA, USA, 1983.
  35. Otwinowski, Z.; Minor, W. in Methods in Enzymology, Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, 1997, vol. 276, part A, pp 307.
  36. Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467. https://doi.org/10.1107/S0108767390000277
  37. Sheldrick, G. M. SHELXL97, Program for the Crystal Structure Refinement; University of Gottingen: Gottingen, Germany, 1997.

Cited by

  1. )manganese(III) nitrate methanol monosolvate vol.70, pp.10, 2014, https://doi.org/10.1107/S1600536814020406
  2. Synthesis, structure, and magnetic properties of dicopper and tricobalt complexes based on N-(2-pyridylmethyl)iminodiethanol vol.2, pp.8, 2015, https://doi.org/10.1039/C5QI00088B