DOI QR코드

DOI QR Code

Ordered Mesoporous Carbon-MoO2 Nanocomposite as High Performance Anode Material in Lithium Ion Batteries

  • Zhou, Yuanyuan (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT) & University of Science and Technology (UST)) ;
  • Lee, Ilbok (School of Integrative Engineering, Chung-Ang University) ;
  • Lee, Chul Wee (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT) & University of Science and Technology (UST)) ;
  • Park, Han Soo (School of Integrative Engineering, Chung-Ang University) ;
  • Son, Hyungbin (School of Integrative Engineering, Chung-Ang University) ;
  • Yoon, Songhun (School of Integrative Engineering, Chung-Ang University)
  • Received : 2013.08.21
  • Accepted : 2013.10.01
  • Published : 2014.01.20

Abstract

Keywords

Experimental

Preparation of TM materials has been reported in our previous work.16 Briefly, self-made oligomeric resols, a cheap MoCl5 and the commercialized surfactant (Pluronic® F127) were utilized to introduce an evaporation-induced selfassembly (EISA) reaction. With MoCl5 reacting with the solvent ethanol, Mo=O bond forms, which enables the formation of hydrogen bonds between Mo-containing compound and the hydroxyl groups (-OH) of resols and the hydrophilic parts of F127.9,10 The initial green color of MoCl5 ethanol solution was turned into brown during the reaction with resols which was then converted to black after evaporation, reflecting the strong interaction between the reactant molecules. 8,9 After calcination in an inert atmosphere at 600 ℃, TMs, were obtained. Initially, 0.137 g (0.5 mmol), 0.273 g (1 mmol), 0.546 g (2 mmol) and 0.820 g (3 mmol) of MoCl5 was reacted with 1 g of resol and 1.6 g of F127, and the corresponding samples were denoted as TM-0.5, TM-1, TM-2 and TM-3, respectively. The weight fraction of MoO2 of the TM samples was determined by inductively coupled plasma (ICP) mass spectroscopy.

For the preparation of composite anodes, TM materials were mixed with a conducting agent (Super P) and polyvinylidene difluoride (PVDF) binder with a weight ratio of 8:1:1. The mixture was then dispersed in N-methylpyrrolidone (NMP) and spread on Cu foil (apparent areas of 1 cm2), followed by pressing and drying at 120 ℃ for 12 h. Typical electrode loading and thickness was about 1.5 mg cm-2 and 50 μm, respectively. The half-cell characteristics were analyzed with a coin-type (CR2016) two-electrode cell in which lithium foil (Cyprus Co.) was used. The electrolyte was 1.0 M LiPF6 in 1:1 (v/v) ethylene carbonate (EC)/ dimethyl carbonate (DMC) (Tomiyama Co.). To investigate the anode performance in a LIB, galvanostatic charge- discharge testing in a voltage range of 2.5 to 0 V vs. Li/Li+ was conducted. For the rate performance measurement, the current was varied from 0.1 to 2 C. The cycle performance for 30 cycles was recorded at a 0.1 C rate. All of the electrochemical measurements were conducted using a WBCS-3000 battery cycler (WonATech Co.)

References

  1. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  2. Zhou, Y.; Kim, Y.; Jo, C.; Lee, J.; Lee, C. W.; Yoon, S. Chem. Commun. 2011, 47, 4944. https://doi.org/10.1039/c1cc10539f
  3. Lou, X. W.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 2697. https://doi.org/10.1021/ja029086h
  4. Sun, Y.; Hu, X.; Yu, J. C.; Li, Q.; Yuan, L.; Zhang, W.; Huang, Y. Energy Environ. Sci. 2011, 4, 2870. https://doi.org/10.1039/c1ee01189h
  5. Shi, Y.; Guo, B.; Corr, S. A.; Hu, Y.-S.; Heier, K. R.; Chen, L.; Seshadri, R.; Stucky, G. D. Nano Lett. 2009, 9, 4215. https://doi.org/10.1021/nl902423a
  6. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146. https://doi.org/10.1038/nmat2612
  7. Zhou, Y.; Lee, C. W.; Yoon, S. Electrochem. Solid-State Lett. 2011, 14(10), 1.
  8. Liu, R.; Ren, Y.; Shi, Y.; Zhang, F.; Zhang, L.; Tu, B.; Zhao, D. Y. Chem. Mater. 2008, 20, 1140-1146. https://doi.org/10.1021/cm071470w
  9. Liu, R.; Shi, Y.; Wan, Y.; Meng, Y.; Zhang, F.; Gu, D.; Chen, Z.; Tu, B.; Zhao, D. J. Am. Chem. Soc. 2006, 128, 11652. https://doi.org/10.1021/ja0633518
  10. Limberg, C.; Boese R.; Schiemenz B. J. Chem. Soc., Dalton Trans. 1997, 1633.
  11. Choi, J.-G.; Thompson L. T. Appl. Surf. Sci. 1996, 93, 143. https://doi.org/10.1016/0169-4332(95)00317-7
  12. Ozkan, E.; Lee, S.-H.; Liu, P.; Tracy, C. E.; Tepehan, F. Z.; Pitts, J. R.; Deb, S. K. Solid State Ionics 2002, 149, 139. https://doi.org/10.1016/S0167-2738(02)00143-1
  13. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Adv. Mater. 2003, 15, 2107. https://doi.org/10.1002/adma.200306125
  14. Li, H.-Q.; Liu, R.-L.; Zhao, D. Y.; Xia, Y.-Y. Carbon 2007, 45(13),2628. https://doi.org/10.1016/j.carbon.2007.08.005
  15. Ku, J. H.; Jung, Y. S.; Lee, K. T.; Kim, C. H.; Oh, S. M. J. Electrochem. Soc. 2009, 156(8), A688. https://doi.org/10.1149/1.3141670
  16. Zhou, Y.; Lee, C. W.; Kim, S.-K.; Yoon, S. ECS Electrochem. Lett. 2012, 1, A17. https://doi.org/10.1149/2.013201eel
  17. Jo, C.; Hwang, J.; Song, H.; Dao, A. H.; Kim, Y.-T.; Lee, S. H.; Hong, S. W.; Yoon, S.; Lee, J. Adv. Funct. Mater. 2013, 23, 3747. https://doi.org/10.1002/adfm.201202682
  18. Katrib, A.; Sobczak, J. W.; Krawczyk, M.; Zommer, L.; Benadda, A.; Jablonski, A.; Maire, G. Surf. Interface Anal. 2002, 34, 225. https://doi.org/10.1002/sia.1288
  19. Zhou, Y.; Jo, C.; Lee, J.; Lee, C. W.; Qao, G.; Yoon, S. Micropor. Mesopor. Mater. 2012, 151, 172. https://doi.org/10.1016/j.micromeso.2011.10.040
  20. Zhou, Y.; Lee, J.; Lee, C. W.; Wu, M.; Yoon, S. ChemSusChem 2012, 5, 2376. https://doi.org/10.1002/cssc.201200450
  21. Naumkin, A. V.; Kraut-Vass, Anna; Gaarenstroom, S. W.; Powell, C. J. NIST Standard Reference Database 20, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://srdata.nist.gov/xps/

Cited by

  1. Lattice— Probing the Structure and Valence of Ni and Its Implication on the Electrochemical Performance vol.26, pp.15, 2014, https://doi.org/10.1021/cm501698a
  2. Nanostructured Mo-based electrode materials for electrochemical energy storage vol.44, pp.8, 2015, https://doi.org/10.1039/C4CS00350K
  3. nanowires as lithium-ion battery anodes vol.8, pp.26, 2016, https://doi.org/10.1039/C6NR02576E
  4. /graphitic carbon composites with enhanced photocatalytic activity under visible light irradiation vol.41, pp.23, 2017, https://doi.org/10.1039/C7NJ02507F
  5. ChemInform Abstract: Ordered Mesoporous Carbon‐MoO2 Nanocomposite as High Performance Anode Material in Lithium Ion Batteries. vol.45, pp.13, 2014, https://doi.org/10.1002/chin.201413010