References
- ABAQUS (2008), ABAQUS v6.8, Simulia, Dassault Systemes, Warwick, RI, USA.
- ASTM (2009), Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process, ASTM-A653-09, American Society for Testing and Materials, West Conshohocken, PA, USA.
- Bannantine, J.A. and Socie, D.F. (1985), "Observations of Cracking Behavior in Tension and Torsion Low Cycle Fatigue", ASTM STP 942, American Society for Testing and Materials, West Conshohocken, PA.
- Baskaran, A., Molleti, S. and Sexton, M. (2006), "Wind performance evaluation of fully bonded roofing assemblies", Construct. Build. Mater., 22, 1-21.
- Beck, V.R. and Stevens, L.K. (1979), "Wind loading failures of corrugated roof cladding", Civil Eng. Trans., 21(1), 45-56.
- Brown, M.W. and Miller, K.J. (1973), "A theory for fatigue under multiaxial stress-strain conditions", Proc. Inst. Mech. Eng., 187, 745-756. https://doi.org/10.1243/PIME_PROC_1973_187_069_02
- Chakherlou, T.N. and Abazadeh, B. (2011), "Estimation of fatigue life for plates including pre-treated fastener holes using different multiaxial fatigue criteria", Int. J. Fatigue, 33, 343-353. https://doi.org/10.1016/j.ijfatigue.2010.09.006
- Coffin, L.F. Jr. (1971), "A note on low cycle fatigue laws", J. Mater., 6(2), 388-402.
- Crossland, B. (1956), "Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel", Proceedings of the international conference on fatigue of metals, Institution of Mechanical Engineers, London.
- Fatemi, A. and Socie, D.F. (1989), "Multiaxial fatigue damage mechanisms and life predictions", Advances in Fatigue Science and Technology, Eds. C. Moura-Branco and L. Guerra-Rosa, Kluwer, Dordrecht, The Netherlands.
- Garcia, R. (2007), "Development of hurricane based fragility curves for wood-zinc houses in Puerto Rico", PhD Thesis, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico.
- Garcia-Palencia, A.J. and Godoy, L.A. (2013), "Fatigue experiments on steel cold-formed panels under a dynamic load protocol", J. Struct. Eng. Mech., 46(3), 387-402. https://doi.org/10.12989/sem.2013.46.3.387
- Glinka, G., Shen, G. and Plumtree, A. (1995), "A multiaxial fatigue strain energy density parameter related to the critical plane", Fatigue Fract. Eng. Mater. Struct., 18, 37-46. https://doi.org/10.1111/j.1460-2695.1995.tb00140.x
- Henderson, D., Ginger, J., Berndt, C. and Kopp, G.A. (2008), "Fatigue failure of G550 steel building components during wind loading", Proc. Australasian Engineering Conference, June.
- Henderson, D.J., Ginger, J.D., Morrison, M.J. and Kopp, G.A. (2009), "Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing", Wind Struct., 12(4), 381-398.
- Hua, C.T. and Socie, D.F. (1985), "Fatigue damage in 1045 steel under variable amplitude loading," Fatigue Fract. Eng. Mater. Struct., 8(2), 101-104. https://doi.org/10.1111/j.1460-2695.1985.tb01197.x
- Lee, K.H. and Rosowsky, D.V. (2004), "Fragility assessment for roof sheathing failure in high wind regions", Eng. Struct., 27, 857-868.
- Li, J., Zhang, Z.P., Sun, Q. et al. (2009), "A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings", Int. J. Fatigue, 31, 776-781. https://doi.org/10.1016/j.ijfatigue.2008.03.008
- Liu, Y. and Mahadevan, S. (2007), "Stochastic fatigue damage modeling under variable amplitude loading", Int. J. Fatigue, 29, 1149-1161. https://doi.org/10.1016/j.ijfatigue.2006.09.009
- Lopez, H.D. and Godoy, L.A. (2005), "Metodologia para la estimacion de danos estructurales ocasionados por vientos huracanados en edificaciones industriales", Revista Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 5(2), 121-134. (in Spanish)
- Mahaarachchi, D. and Mahendran, M. (2008), "A strain criterion for pull-through failures in crest-fixed steel claddings", Eng. Struct., 31, 498-506.
- Mahaarachchi, D. and Mahendran, M. (2009), "Wind uplift strength of trapezoidal steel cladding with closely spaced ribs", J. Wind Eng. Indus. Aerodyn., 97, 140-150. https://doi.org/10.1016/j.jweia.2009.03.002
- Mahendran, M. (1995), "Wind-resistant low-rise buildings in the tropics", ASCE J. Perform. Constr. Facil., 9, 330-346. https://doi.org/10.1061/(ASCE)0887-3828(1995)9:4(330)
- Mahendran, M. and Mahaarachchi, D. (2002), "Cyclic pull-out strength of screwed connections in steel roof and wall cladding systems using thin steel battens", ASCE J. Struct. Eng., 128(6), 771-778. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(771)
- Mahendran, M. and Mahaarachchi, D. (2004), "Splitting failures in trapezoidal steel roof cladding", ASCE J. Perform. Constr. Facil., 18, 4-11. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:1(4)
- Mahendran, M. and Tang, R.B. (1998), "Pull-out strength of steel roof and wall cladding systems", ASCE J. Struct. Eng., 124(10), 1192-1201. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1192)
- Manson, S.S. (1965), "Fatigue: a complex subject - some simple approximations", NASA-TM-X-52084, National Aeronautics and Space Administration.
- Matcor (2007), Rolled Formed Metal Building Components, Matcor, Inc. Guaynabo, Puerto Rico.
- Morrow, J. (1965), Cyclic Plastic Strain Energy and Fatigue of Metals, Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378, American Society for Testing and Materials, West Conshohocken, PA.
- Park, J.H. and Song, J.H. (1995), "Detailed evaluation of methods for estimation of fatigue properties", Int. J. Fatigue, 17(5), 365-373. https://doi.org/10.1016/0142-1123(95)99737-U
- Prinz, G.S. and Nussbaumer, A. (2012), "Fatigue analysis of liquid-storage tank shell-to-base connections under multi-axial loading", Eng. Struct., 40, 75-82. https://doi.org/10.1016/j.engstruct.2012.02.027
- Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2009), Steel Structures Design and Behavior, Fifth Edition, Pearson Prentice Hall, Saddle River, NJ. USA.
- Smith, R.N., Watson, P. and Topper, T.H. (1970), "A stress-strain parameter for the fatigue of metals", J. Mater., 5(4), 767-778.
- Socie, D.F., Kurath, P. and Koch, J.L. (1989), A Multiaxial Fatigue Damage Parameter, European Group on Fracture, EGF Publication 3, Mechanical Engineering Publications, London.
- Socie, D.F. and Marquis, G.B. (2000), Multiaxial Fatigue, Society of Automotive Engineers, Philadelphia, PA, USA.
- Wang, Y.Y. and Yao, W.X. (2006), A multiaxial fatigue criterion for various metallic materials under proportional and non-proportional loading", Int. J. Fatigue, 28, 401-408. https://doi.org/10.1016/j.ijfatigue.2005.07.007
Cited by
- Nonlinear finite element modeling of steel-sheathed cold-formed steel shear walls vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.079
- Behavior of wall panels in industrial buildings caused by differential settlements vol.56, pp.3, 2015, https://doi.org/10.12989/sem.2015.56.3.443
- Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms vol.24, pp.2, 2014, https://doi.org/10.12989/scs.2017.24.2.213
- Study on the bearing capacity of cold-formed steel under different boundary conditions in transmission towers vol.12, pp.6, 2014, https://doi.org/10.12989/eas.2017.12.6.665
- Concrete-filled twin-layer steel-sheet CWs system: A systematic review of the literature vol.18, pp.6, 2014, https://doi.org/10.1590/1679-78256622
- Numerical Simulation and Design Recommendations for Web Crippling Strength of Cold-Formed Steel Channels with Web Holes under Interior-One-Flange Loading at Elevated Temperatures vol.11, pp.12, 2014, https://doi.org/10.3390/buildings11120666