References
- A. Ambroso, C. Chalons, F. Coquel, and T. Galie, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, Math. Model. Numer. Anal. 43 (2009), no. 6, 1063-1097. https://doi.org/10.1051/m2an/2009038
- N. Andrianov and G.Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys. 195 (2004), no. 2, 434-464. https://doi.org/10.1016/j.jcp.2003.10.006
- E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004), no. 6, 2050-2065. https://doi.org/10.1137/S1064827503431090
- M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the de agration-to-detonation transition (ddt) in reactive granular materials, Int. J. Multiphase Flow 12 (1986), no. 6, 861-889. https://doi.org/10.1016/0301-9322(86)90033-9
- R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Compu. 72 (2003), no. 241, 131-157.
- R. Botchorishvili and O. Pironneau, Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws, J. Comput. Phys. 187 (2003), no. 2, 391-427. https://doi.org/10.1016/S0021-9991(03)00086-X
- J. B. Bzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Steward, Two-phase modelling of a de agration-to-detonation transition in granular materials: A critical examination of modelling issues, Phys. Fluids 11 (1999), no. 2, 378-402. https://doi.org/10.1063/1.869887
- A. Chinnayya, A.-Y. LeRoux, and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow water equations with topography: the resonance phenomenon, Int. J. Finite Vol. 1 (2004), no. 1, 33 pp.
- G. Dal Maso, P. G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9) 74 (1995), no. 6, 483-548.
- P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Contin. Mech. Thermodyn. 4 (1992), no. 4, 279-312. https://doi.org/10.1007/BF01129333
- T. Gallouet, J.-M. Herard, and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci. 14 (2004), no. 5, 663-700. https://doi.org/10.1142/S0218202504003404
- P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant hyperbolic systems of balance laws, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 6881-902.
- J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1-16. https://doi.org/10.1137/0733001
- J. M. Greenberg, A. Y. Leroux, R. Baraille, and A. Noussair, Analysis and approximation of conservation laws with source terms, SIAM J. Numer. Anal. 34 (1997), no. 5, 1980-2007. https://doi.org/10.1137/S0036142995286751
- S. Jin and X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comput. Math. 22 (2004), no. 2, 230-249.
- S. Karni and G. Hernandez-Duenas, A hybrid algorithm for the Baer-Nunziato model using the Riemann invariants, J. Sci. Comput. 45 (2010), no. 1-3, 382-403. https://doi.org/10.1007/s10915-009-9332-y
- B. L. Keyfitz, R. Sander, and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst. Ser. B 3 (2003), no. 4, 541-563. https://doi.org/10.3934/dcdsb.2003.3.541
- D. Kroner, P. G. LeFloch, and M. D. Thanh, The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section, Math. Model. Numer. Anal. 42 (2008), no. 3, 425-442. https://doi.org/10.1051/m2an:2008011
- D. Kroner and M. D. Thanh, Numerical solutions to compressible flows in a nozzle with variable cross-section, SIAM J. Numer. Anal. 43 (2005), no. 2, 796-824. https://doi.org/10.1137/040607460
- M.-H. Lallemand and R. Saurel, Pressure relaxation procedures for multiphase compressible flows, INRIA Report (2000), No. 4038.
- P. G. LeFloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci. 1 (2003), no. 4, 763-797. https://doi.org/10.4310/CMS.2003.v1.n4.a6
- P. G. LeFloch and M. D. Thanh, The Riemann problem for the shallow water equations with discontinuous topography, Commun. Math. Sci. 5 (2007), no. 4, 865-885. https://doi.org/10.4310/CMS.2007.v5.n4.a7
- P. G. LeFloch and M. D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J. Comput. Phys. 230 (2011), no. 20, 7631-7660. https://doi.org/10.1016/j.jcp.2011.06.017
- S. T. Munkejord, Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation, Computers & Fluids 36 (2007), no. 6, 1061-1080. https://doi.org/10.1016/j.compfluid.2007.01.001
- R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), no. 2, 425-467. https://doi.org/10.1006/jcph.1999.6187
- D. W. Schwendeman, C. W. Wahle, and A. K. Kapila, The Riemann problem and a high-resolution godunov method for a model of compressible two-phase flow, J. Comput. Phys. 212 (2006), no. 2, 490-526. https://doi.org/10.1016/j.jcp.2005.07.012
- M. D. Thanh, A phase decomposition approach and the Riemann problem for a model of two-phase flows, preprint.
- M. D. Thanh, The Riemann problem for a nonisentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math. 69 (2009), no. 6, 1501-1519. https://doi.org/10.1137/080724095
- M. D. Thanh, Exact solutions of a two-fluid model of two-phase compressible flows with gravity, Nonlinear Anal. Real World Appl. 13 (2012), no. 2, 987-998. https://doi.org/10.1016/j.nonrwa.2011.09.009
- M. D. Thanh, On a two-fluid model of two-phase compressible flows and its numerical approximation, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 1, 195-211. https://doi.org/10.1016/j.cnsns.2011.05.010
- M. D. Thanh and A. Izani Md. Ismail, A well-balanced scheme for a one-pressure model of two-phase flows, Phys. Scr. 79 (2009), no. 6, 065401, 7pp. https://doi.org/10.1088/0031-8949/79/06/065401
- M. D. Thanh, Md. Fazlul Karim, and A. Izani Md. Ismail, Well-balanced scheme for shallow water equations with arbitrary topography, Int. J. Dyn. Syst. Differ. Equ. 1 (2008), no. 3, 196-204.
- M. D. Thanh, D. Kroner, and C. Chalons, A robust numerical method for approximating solutions of a model of two-phase flows and its properties, Appl. Math. Comput. 219 (2012), no. 1, 320-344. https://doi.org/10.1016/j.amc.2012.06.022
- M. D. Thanh, D. Kroner, and N. T. Nam, Numerical approximation for a Baer-Nunziato model of two-phase flows, Appl. Numer. Math. 61 (2011), no. 5, 702-721. https://doi.org/10.1016/j.apnum.2011.01.004
- F. M. White, Fluid Mechanics, 7th ed. McGraw-Hill, 2010.