• Title/Summary/Keyword: contact discontinuity

Search Result 48, Processing Time 0.028 seconds

A TREATMENT OF CONTACT DISCONTINUITY FOR CENTRAL UPWIND SCHEME BY CHANGING FLUX FUNCTIONS

  • Shin, Moungin;Shin, Suyeon;Hwang, Woonjae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.29-45
    • /
    • 2013
  • Central schemes offer a simple and versatile approach for computing approximate solutions of nonlinear systems of hyperbolic conservation laws. However, there are large numerical dissipation in case of contact discontinuity. We study semi-discrete central upwind scheme by changing flux functions to reduce the numerical dissipation and we perform numerical computations for various problems in case of contact discontinuity.

Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

  • Kim, No-Hyu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness.

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

Method for Accurate Calculation of Multi Dimensional Flow (Variable Interpolation Method for Roe's FDS)

  • Koo Hyung Mo;Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.184-186
    • /
    • 2003
  • In order to reduce numerical dissipation in a multi-dimensional flow, a new variable interpolation method for Roe's FDS is proposed. By introducing the Mach number weighting function w, the properties at the cell-interface are interpolated and in a non flow-aligned grid system, it can give more accurate solution because of less numerical dissipation. Various test cases including oblique contact discontinuity are simulated and compared with the results of original Roe's FDS.

  • PDF

Moving Mesh Application for Thermal-Hydraulic Analysis in Cable-In-Conduit-Conductors of KSTAR Superconducting Magnet

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Keeman;Jinliang He
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.522-531
    • /
    • 2002
  • In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.

NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD (FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

Numerical Simulation of Free Surface Flows Using the Roe's Flux-difference Splitting Scheme (Roe의 Flux-difference Splitting 기법을 이용한 자유표면 유동 모사)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • A code is developed to simulate incompressible free surface flows using the Roe's flux-difference splitting scheme. An interface of two fluids is considered as a moving contact discontinuity. The continuities of pressure and normal velocity across the interface are enforced by the conservation law in the integral sense. The fluxes are computed using the Roe's flux-difference splitting scheme for two incompressible fluids. The interface can be identified based on the computed density distribution. However, no additional treatment is required along the interface during the whole computations. Complicated time evolution of the interface including topological change can be captured without any difficulties. The developed code is applied to simulate the Rayleigh-Taylor instability of two incompressible fluids in the density ratio of 7.2:1 and the broken dam problem of water-air. The present results are compared with other available results and good agreements are achieved for the both cases.

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

SIMULATION OF WATER-OIL-AIR FLOWS AROUND OIL BOOMS UNDER RELATIVE MOTION (상대운동을 하는 방제판 주위 물-기름-공기 유동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.31-38
    • /
    • 2016
  • The FDS-HCIB method is expanded to simulate water-oil-air flows around oil booms under relative motion, which is intended to increase the thickness of contained oil. The FDS scheme captures discontinuity in the density field and abrupt change of the tangential velocity across an interface without smearing. The HCIB method handles relative motions of thin oil booms with ease. To validate the developed FDS-HCIB code for water-oil-air flow around a moving body, the computed results are compared with the reported experimental results on the shape, length, and thickness of the oil slicks under towing. It is observed that the increase in pressure field between two barriers lifts the oil slick and the interfacial wave propagates and reflects as one barrier gets closer to the other barrier.