DOI QR코드

DOI QR Code

Thermo-Hydraulic Characteristics of Two-Dimensional Wavy Channels with Different Shape Parameters

2차원 파형 채널의 형상변화에 따른 열유동 특성

  • Received : 2012.11.12
  • Accepted : 2013.11.11
  • Published : 2014.01.01

Abstract

Two-dimensional laminar numerical analyses were carried out for investigating the thermo-hydraulic characteristics of wavy channels with different shape parameters ($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$). PAO (polyalphaolefin), which is used for electronics cooling, is considered as the working fluid. In addition, constant properties, periodically developed flow, and uniform channel wall temperature conditions are assumed. Streamline and temperature fields, isothermal Fanning friction factors, and Colburn factors are presented for different Reynolds numbers in the laminar region ($1{\leq}Re{\leq}1000$). The results show that heat transfer is enhanced when the channel corrugation ratio (${\gamma}$) is large and channel spacing ratio (${\in}$) is small in the low Reynolds number region (Re < 50) and when ${\in}$ and ${\gamma}$ are large in the high Reynolds number region ($Re{\geq}50$).

본 연구에서는 2차원 파형 채널의 여러 형상($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$)에 대한 층류 열유동 수치해석을 수행하고, 형상변화에 따른 열유동특성을 비교 분석하였다. 전자장비 냉각용으로 적용되고 있는 PAO(Polyalphaolefin)를 작동유체로 고려하였고, 균일한 물성치와 주기적으로 발달한 유동 및 채널벽면에서의 등온 조건을 가정하였다. 층류유량조건($1{\leq}Re{\leq}1000$)에서 레이놀즈수에 따른 유선 및 온도 분포, 등온 Fanning 마찰계수, Colburn 계수를 제시하였고, 분석 결과 낮은 레이놀즈(Re<50) 구간에서는 채널주름비가 크고 채널간격비가 작을수록, 높은 레이놀즈($Re{\geq}50$) 구간에서는 채널주름비와 채널간격비가 모두 클수록 열전달이 향상되었다.

Keywords

References

  1. Webb, R. L., 1994, Principles of Enhanced Heat Transfer, Wiley Inter-Science, p.19.
  2. Kays, W. M. and London, A. L., 1998, Compact Heat Exchanger, 3rd ed., McGraw-Hill, pp.157-161.
  3. Ismail, L. S., Ranganayakulu, C. and Shah, R. K., 2009, "Numerical Study of Flow Patterns of Compact Plate-Fin Heat Exchangers and Generation of Design Data for Offset and Wavy Fins," International Journal of Heat and Mass Transfer, Vol. 52, pp. 3972-3983. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.026
  4. Jang, J. Y. and Chen, L. K., 1997, "Numerical Analysis of Heat Transfer and Fluid Flow in a Three-Dimensional Wavy-Fin and Tube Heat Exchanger," International Journal of Heat and Mass Transfer, Vol. 40, No. 16, pp. 3981-3990. https://doi.org/10.1016/S0017-9310(97)00047-1
  5. Zhang, J. Z., Kundu, J. and Manglik, R. M., 2004, "Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores," International Journal of Heat and Mass Transfer, Vol. 47, pp. 1719-1730. https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.006
  6. Metwally, H. M. and Manglik, R. M., 2004, "Enhanced Heat Transfer due to Curvature-Induced Lateral Vortices in Laminar Flows in Sinusoidal Corrugated-Plate Channels," International Journal of Heat and Mass Transfer, Vol. 47, pp. 2283-2292. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.019
  7. Xin, R. C. and Tao, W. Q., 1988, "Numerical Prediction of Laminar Flow and Heat Transfer in Wavy Channels of Uniform Cross-Sectional Area," Numerical Heat Transfer, Vol. 14, pp. 465-481.
  8. MIL-PRF-87252C, 2004, "Coolant Fluid, Hydrolytically Stable, Dielectric."
  9. Kim, K. W. and Kim, S. J., 2012, "Thermo- Hydraulic Characteristics of a Wavy Channel in Plate-Fin Heat Exchanger for Airborne Radar," KIMST Conference, pp.1845-1848.
  10. Ruffled Fin Terminology for Robinson Fin, R600006, Robinson Fin Machines Inc.
  11. Incropera, F. P. and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, 4th ed., John Wiley & Sons, p. 450.
  12. GAMBIT User's Guide, Version 2.3, 2006, Fluent Inc.
  13. FLUENT User's Guide, Version 6.3, 2006, Fluent Inc.
  14. Mohapatra, S. C., 2006, "An Overview of Liquid Coolants for Electronics Cooling," Electronics Cooling, Vol. 12, No. 2.
  15. Kundu, J., 2001, Numerical Investigation of Laminar Forced Convection in Two-Dimensional and Three-Dimensional Sinusoidal Corrugated Ducts, Thesis, University of Cincineti.