DOI QR코드

DOI QR Code

Determination of the Strike and the Dip of a Line Source Using Gravity Gradient Tensor

중력 변화율 텐서를 이용한 선형 이상체의 주향과 경사 결정

  • Rim, Hyoungrea (Development of Exploration Geophysics & Mining Engineering, Korea Institute of Geoscience and Mineral Resources) ;
  • Jung, Hyun-Key (Development of Exploration Geophysics & Mining Engineering, Korea Institute of Geoscience and Mineral Resources)
  • 임형래 (한국지질자원연구원 탐사개발연구실) ;
  • 정현기 (한국지질자원연구원 탐사개발연구실)
  • Received : 2014.10.30
  • Accepted : 2014.11.10
  • Published : 2014.12.31

Abstract

In this paper, the automatic determination algorithm of strike and dip of a line source using gravity gradient on a single profile is proposed. In general, the gravity gradient tensor due to a line source has only two independent components because of its 2-Dimensional (2-D) characteristics. However, if the line source has the strike and dip regarding the observation profile, it comes to have five independent components. The proposed algorithm of the determination both strike and dip is based on the rotational transform that converts full gravity gradient tensor to reduced 2-D gravity gradient tensor. The least-square method is applied in order to find optimum rotational angles that make one of the row components minimalized simultaneously. The two synthetic cases of a line source are represented; one has strike only and the other has both strike and dip. This study finds that the automatic determination method using gravity gradient tensor can find directions of a line source in each case.

이 논문에서는 한 개의 측선에서 측정된 중력 변화율 텐서를 이용하여 선형 이상체의 주향과 경사를 자동 결정하는 알고리즘을 제시한다. 선형 이상체의 중력 변화율은 측선에 수직으로 배열되어 있는 경우 이차원 효과를 보이므로, 이론적으로 두 개의 독립 성분을 제외하고는 값을 갖지 아니한다. 반면 주향과 경사를 가지는 선형 이상체는 5개의 독립 성분을 가지게 된다. 이와 같은 선형 이상체가 가지는 중력 변화율 텐서의 이차원 특성을 활용하여 5개의 독립 성분 중 3개가 동시에 최소 값이 되도록 하는 회전변환의 변환각은 곧바로 선형 이상체의 주향과 경사를 의미한다. 이 논문에서는 최소자승법을 이용하여 5개의 중력 변화율 성분 중 3개를 최소로 하는 변환 행렬 각을 구하였고 이를 이용하여 선형 이상체의 주향과 경사를 자동 결정할 수 있음을 보였다. 이 논문에서는 모델 계산을 통하여 주향만 있는 경우와 주향과 경사 모두를 가지는 경우에 대하여 각각의 방향각들을 자동 결정할 수 있음을 보였다.

Keywords

References

  1. Beike, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75, I59-I74. https://doi.org/10.1190/1.3493639
  2. Beike, M. and Pedersen, L.B., 2010, Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics, 75, I37-I49. https://doi.org/10.1190/1.3484098
  3. Blakely, R.J., 1996, Potential theory in gravity and magnetic applications. Cambridge university press, Cambridge, UK, 441 p.
  4. Braga, M.A., Endo, I., Galbiatti, H.F., and Carlos, D.U., 2014, 3D full tensor gradiometry and falcon systems data analysis for iron ore exploration: Bau Mine, Quadrilatero Ferrifero, Minas Geralis, Brazil. Geophysics, 79, B213-B220. https://doi.org/10.1190/geo2014-0104.1
  5. Butler, D.K., 1984, Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics, 49, 1084-1096. https://doi.org/10.1190/1.1441723
  6. Dransfield, M.H., 2010, Conforming Falcon gravity and the global gravity anomaly. Geophysical Prospecting, 58, 469-483. https://doi.org/10.1111/j.1365-2478.2009.00830.x
  7. Ellis, G. and Peden, I., 1995, An analysis technique for buried inhomogeneous dielectric objects in the presence of an air-earth interface. IEEE Transactions on Geoscience and Remote Sensing, 33, 535-540. https://doi.org/10.1109/36.387570
  8. Krahenbuhl, R.A., Rim, H., Reitz, A., and Li., Y., 2014, Improved recovery of fluid movement through timelapse borehole vector gravity. Society of Exploration Expended Abstract, 33, 1348-1353.
  9. Kwon, B.D., Lee, H., Lee, G.H., Rim, H., and Oh, S., 2000, Effective geophysical methods in detecting subsurface caves: On the case of Manjang cave, Cheju Island. Journal of the Korean Earth Science Society, 21, 408-422. (in Korean)
  10. Lee, H. and Rim, H., 2010, Precise gravity terrain correction of gravity exploration for small anomalous bodies. Journal of the Korean Earth Science Society, 31, 1-7. (in Korean) https://doi.org/10.5467/JKESS.2010.31.1.001
  11. Lee, J.B., 2001, Falcon gravity gradiometer technology. Exploration Geophysics, 32, 247-250. https://doi.org/10.1071/EG01247
  12. Martinez, C., Li, Y., Krahenbuhl, R., and Braga, M.A., 2013, 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilatero Ferrifero, Brazil. Geophysics, 78, B1-B11. https://doi.org/10.1190/geo2012-0106.1
  13. Pedersen L.B. and Rasmussen, T.M., 1990, The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps. Geophysics, 55, 1588-1566.
  14. Rim, H., 2011, Detection of a magnetic dipole by means of magnetic gradient tensor. Journal of the Korean Earth Science Society, 32, 595-601. (in Korean) https://doi.org/10.5467/JKESS.2011.32.6.595
  15. Rim, H. and Li, Y., 2012, Single-hole imaging using borehole gravity gradiometry. Geophysics, 77, G67-G76. https://doi.org/10.1190/geo2012-0003.1
  16. Rim, H. and Li, Y., 2013, Borehole vector gravity: A numerical study. Society of Exploration Expended Abstract, 32, 255-259.
  17. Schmidt, P.W. and Clark, D.A., 2006, The magnetic gradient tensor: Its properties and uses in source characterization. The Leading Edge, 25, 75-78. https://doi.org/10.1190/1.2164759
  18. Zhdanov, M.S., Ellis, R., and Mukherjee, S., 2004, Threedimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics, 69, 925-937. https://doi.org/10.1190/1.1778236