DOI QR코드

DOI QR Code

임의의 네트워크 지연을 갖는 선형 다개체시스템의 일치

Consensus of Linear Multi-Agent Systems with an Arbitrary Network Delay

  • Lee, Sungryul (Dept. of Control and Robotics Engineering, Kunsan National University)
  • 투고 : 2014.10.28
  • 심사 : 2014.12.03
  • 발행 : 2014.12.31

초록

본 논문은 임의의 네트워크 시간 지연이 존재하는 선형 다개체 시스템의 일치문제를 다룬다. 다개체 시스템의 상태일치를 위한 충분조건은 선형행렬방정식을 이용하여 제공된다. 또한, 제안한 충분조건아래에서 임의의 크기를 갖는 네트워크 지연이 존재하는 경우에도 일치에 도달할 수 있음을 증명한다. 마지막으로 제안한 결과의 유효성을 증명하기 위하여 수치 예제를 제공한다.

This paper investigates the consensus problem for linear multi-agent systems with an arbitrary network delay. The sufficient conditions for a state consensus of linear multi-agent systems are provided by using linear matrix inequalities. Moreover, it is shown that under the proposed protocol, the consensus can be achieved even in the presence of an arbitrarily large network delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

키워드

참고문헌

  1. R. Olfati-Saber, and R. Murray, "Consensus Problems in Networks of Agents With Switching Topology and Time-Delays," IEEE Trans. Automat. Control, vol. 49, no. 9, pp. 1520-1533, 2004. https://doi.org/10.1109/TAC.2004.834113
  2. J. Seo, H. Shim, and J. Back, "Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach," Automatica, vol. 45, pp. 2659-2664, 2009. https://doi.org/10.1016/j.automatica.2009.07.022
  3. H. Kim, H. Shim, and J. Seo, "Output Consensus of Heterogeneous Uncertain Linear Multi-Agent Systems," IEEE Trans. Automat. Control, vol. 56, no. 1, pp. 200-206, 2011. https://doi.org/10.1109/TAC.2010.2088710
  4. P. Wieland, R. Sepulchre, and F. Allgower, "An internal model principle is necessary and sufficient for linear output synchronization," Automatica, vol. 47, pp. 1068-1074, 2011. https://doi.org/10.1016/j.automatica.2011.01.081
  5. Z. Li, Z. Duan, G. Chen, and L. Huang, "Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint," IEEE Trans. Circuits & Systems-I: Regular Papers, vol. 57, no. 1, pp. 213-224, 2010. https://doi.org/10.1109/TCSI.2009.2023937
  6. H. L. Trentelman, K. Takaba, and N. Monshizadeh, "Robust Synchronization of Uncertain Linear Multi-Agent Systems," IEEE Trans. On Automat. Contr., vol.58, no.6, June 2013, pp1511-1523. https://doi.org/10.1109/TAC.2013.2239011
  7. Z. Li, W. Ren, X. Liu, and M. Fu, "Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols," IEEE Trans. Automat. Control, vol. 58, no. 7, pp.1786-1791, 2013. https://doi.org/10.1109/TAC.2012.2235715
  8. P. Lin, Y. Jia, and L. Li, "Distributed robust H infinite consensus control in directed networks of agents with time-delay," Systems & Control Letters, vol. 57, pp. 643-653, 2008. https://doi.org/10.1016/j.sysconle.2008.01.002
  9. Y.G. Sun and L. Wang, "Consensus of Multi-Agent Systems in Directed Networks With Nonuniform Time-Varying Delays," IEEE Trans. Automat. Control, vol. 54, no. 7, pp. 1607-1613, 2009. https://doi.org/10.1109/TAC.2009.2017963
  10. Y.G. Sun, L. Wang, and G. Xie, "Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays," Systems & Control Letters, vol. 57, pp. 175-183, 2008. https://doi.org/10.1016/j.sysconle.2007.08.009
  11. Y. Cui, and Y. Jia, "L2-Linfinite consensus control for high-order multi-agent systems with switching topologies and time-varying delays," IET Control Thoery & Applications, vol.6, iss.12. pp.1933-1940, 2012