DOI QR코드

DOI QR Code

위치기반서비스 이용에 대한 인지된 위험의 영향 연구

An Empirical Study of the Effect of Perceived Risk upon Intention to LBS Use

  • Kim, Sang Min (Research Division, PRFKorea) ;
  • Lee, Ji-Eun (School of Business Administration & IT MBA, Hanyang Cyber University) ;
  • Park, Chankwon (School of Business Administration & IT MBA, Hanyang Cyber University)
  • 투고 : 2014.09.22
  • 심사 : 2014.12.20
  • 발행 : 2014.12.28

초록

개인정보 관련 사건사고가 증가하면서 개인정보 기반의 모바일 서비스에 대한 우려가 늘고 있다. 본 연구는 스마트폰 보급 확대로 이용이 증가하고 있는 위치기반서비스 앱 이용에 영향을 미치는 요인을 도출하고 이에 대한 인지된 위험의 영향력을 확인하고자 하였다. 이를 위해 위치기반서비스 앱 이용 행위에 영향을 미치는 변수를 도출한 후 인지된 위험이 이들 변수와 앱 이용 행위 사이에 어떤 영향을 미치는가를 실증 분석하였다. 분석 결과, 유용성과 사회적 영향은 위치기반서비스 앱 이용에 영향을 미치나, 인지된 위험을 높게 인식하는 집단은 유용성으로부터, 인지된 위험을 낮게 인식하는 집단은 사회적 영향으로부터 이용 행위에 더 크게 영향을 받는 것으로 나타났다. 위치기반서비스 산업의 성장을 위해서는 인지된 위험의 교섭력을 최소화하기 위한 정보보호 정책과 보호기술이 요구되며 기업 입장에서는 인지된 위험 수준에 따른 개발 전략을 취해야 할 것이다.

As the disclosure of privacy information has grown steadily, concerns about mobile services based on the personal information also increased. We aspired to reveal factors influencing the use of Location-Based services(LBS) App and analyse how the perceived risk affected between these factors and the use of LBS App. Results showed that usefulness and social influence influenced on the use of LBS App. We also found that the group who highly recognized the perceived risk was highly affected by usefulness and the group who lowly recognized the perceived risk was highly affected by social influence. Findings show that the company's strategy should be different depending on the level of consumers' perceived risk.

키워드

참고문헌

  1. Korea Communications Commission, Statistics of Wireless Communications Services, 2013.
  2. M.S. Yim, Understanding the factors that influence website retention and privacy unconcern after the disclosure of privacy information, The Journal of Digital Policy & Management, Vol.11, No.1, pp.107-119, 2013. https://doi.org/10.14400/JDPM.2013.11.1.107
  3. H.S. Cha, Factors influencing the adoption of location-based smartphone applications : An application of the privacy calculus model, Asia Pacific Journal of Information Systems, Vol.22, No.4, pp.7-29, 2012.
  4. M.J. Choi, The exploratory research on providing personal information according to smart phone location-based service usage experience, The Journal of Advertising Research, Vol.96, pp.249-277, 2013.
  5. F.D. Davis, Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, Vol.13, No.3, pp.319-341, 1989. https://doi.org/10.2307/249008
  6. V. Venkatesh and H. Bala, Technology acceptance model 3 and a research agenda on interventions, Decision Sciences, Vol.39, No.2, pp.273-315, 2008. https://doi.org/10.1111/j.1540-5915.2008.00192.x
  7. W.H. DeLone and E.R. McLean, Information systems success: The quest for the dependent variable, Information Systems Research, Vol.3, pp.60-95, 1992. https://doi.org/10.1287/isre.3.1.60
  8. D.H. McKnight, V. Choudhury and C. Kacmar, Developing and validating trust measures for e-commerce: An integrative typology, Information System Research, Vol.13, pp.334-359, 2002. https://doi.org/10.1287/isre.13.3.334.81
  9. R. Bauer, Consumer behavior as risk taking in: R.S. Hancock(ed.). Dynamic Marketing for a Changing World, American Marketing Association, Chicago, 1960.
  10. H. Xu, X. Luo, J.M. Carroll and M.B. Rosson, The personalization privacy paradox: An exploratory study of decision making process for location-aware marketing, Decision Support Systems, Vol. 51, No.1, pp.42-52, 2011. https://doi.org/10.1016/j.dss.2010.11.017
  11. F.D. Davis, R.P. Bagozzi and P.R. Warshaw, User acceptance of computer technology: A comparison of two theoretical models, Management Science, Vol.35, No.8, pp.982-1003, 1989. https://doi.org/10.1287/mnsc.35.8.982
  12. D.K. Kim and S.C. Kim, Factors influencing users' resistance to location based SNS application for smart phones, Korean Journal of Broadcasting, Vol.25, No.3, pp.133-166, 2011.
  13. W.H. DeLone and E.R. McLean, The DeLone and McLean model of information systems success: A ten year update, Journal of Management Information Systems, Vol. 19, No.4, pp.60-95, 2003.
  14. A. Smith, Testing the Surf: Criteria for evaluating internet information resources, The Public-Access Computer Systems Review, Vol.8, No.3, pp.5-23, 1997.
  15. D. Bachiochi, M. Brestene, E. Chouinard, N. Conlan, M. Danchak, T. Furey, C. Neligon and D. Way, Usability studies and designing navigational aids for the world wide web, Proceedings of the sixth WWW conference, Santa Clara, CA, 1997.
  16. V. Venkatesh and F.D. Davis, A theoretical extension of the technology acceptance model: Four longitudinal field studies, Management Science, Vol.46, pp.186-204, 2000. https://doi.org/10.1287/mnsc.46.2.186.11926
  17. S. Jarvenpaa and N. Tractinsky, Consumer trust in an internet store: Across-cultural validation, Journal of Computer Mediated Communication, Vol.5, No.2, pp.1-25, 1999.
  18. T.S. Teo and Y. Yu, Online buying behavior: A transaction cost economics perspective, Omega, Vol.33, No.5, pp.451-465, 2005. https://doi.org/10.1016/j.omega.2004.06.002
  19. H.J. Yun, D.H. Han and C.C. Lee, Understanding the use of location-based service applications: Do privacy concerns matter, Journal of Electronic Commerce Research, Vol.14, No.3, pp.215-230, 2013.