DOI QR코드

DOI QR Code

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H. (Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine, Weldon School of Biomedical Engineering, Center for Cancer Research, Purdue University) ;
  • Park, Jeongho (Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine, Weldon School of Biomedical Engineering, Center for Cancer Research, Purdue University) ;
  • Kim, Myunghoo (Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Purdue Veterinary Medicine, Weldon School of Biomedical Engineering, Center for Cancer Research, Purdue University)
  • 투고 : 2014.10.16
  • 심사 : 2014.11.28
  • 발행 : 2014.12.31

초록

T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

키워드

참고문헌

  1. Heinonen, K. M. and C. Perreault. 2008. Development and functional properties of thymic and extrathymic T lymphocytes. Crit. Rev. Immunol. 28: 441-466. https://doi.org/10.1615/CritRevImmunol.v28.i5.40
  2. Bhandoola, A., B. H. von, H. T. Petrie, and J. C. Zuniga-Pflucker. 2007. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26: 678-689. https://doi.org/10.1016/j.immuni.2007.05.009
  3. Gapin, L. 2014. Check MAIT. J. Immunol. 192: 4475-4480. https://doi.org/10.4049/jimmunol.1400119
  4. Rossjohn, J., D. G. Pellicci, O. Patel, L. Gapin, and D. I. Godfrey. 2012. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12: 845-857. https://doi.org/10.1038/nri3328
  5. Wan, Y. Y. 2010. Multi-tasking of helper T cells. Immunology 130: 166-171. https://doi.org/10.1111/j.1365-2567.2010.03289.x
  6. Li, P., R. Spolski, W. Liao, and W. J. Leonard. 2014. Complex interactions of transcription factors in mediating cytokine biology in T cells. Immunol. Rev. 261: 141-156. https://doi.org/10.1111/imr.12199
  7. Gratz, I. K., and D. J. Campbell. 2014. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol. 5: 333.
  8. Liston, A., and D. H. Gray. 2014. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14: 154-165. https://doi.org/10.1038/nri3605
  9. Liu, X., R. I. Nurieva, and C. Dong. 2013. Transcriptional regulation of follicular T-helper (Tfh) cells. Immunol. Rev. 252: 139-145. https://doi.org/10.1111/imr.12040
  10. Tripathi, S. K. and R. Lahesmaa. 2014. Transcriptional and epigenetic regulation of T-helper lineage specification. Immunol. Rev. 261: 62-83. https://doi.org/10.1111/imr.12204
  11. Bonelli, M., H. Y. Shih, K. Hirahara, K. Singelton, A. Laurence, A. Poholek, T. Hand, Y. Mikami, G. Vahedi, Y. Kanno, and J. J. O'Shea. 2014. Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr. Top. Microbiol. Immunol. 381: 279-326.
  12. Kara, E. E., I. Comerford, K. A. Fenix, C. R. Bastow, C. E. Gregor, D. R. McKenzie, and S. R. McColl. 2014. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS. Pathog. 10: e1003905. https://doi.org/10.1371/journal.ppat.1003905
  13. Man, K., M. Miasari, W. Shi, A. Xin, D. C. Henstridge, S. Preston, M. Pellegrini, G. T. Belz, G. K. Smyth, M. A. Febbraio, S. L. Nutt, and A. Kallies. 2013. The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat. Immunol. 14: 1155-1165. https://doi.org/10.1038/ni.2710
  14. Nakayama, T., and M. Yamashita. 2010. The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin. Immunol. 22: 303-309. https://doi.org/10.1016/j.smim.2010.04.010
  15. Nurieva, R. I., X. Liu, and C. Dong. 2009. Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol. Rev. 229: 88-100. https://doi.org/10.1111/j.1600-065X.2009.00769.x
  16. Ishii N., T. Takahashi, P. Soroosh, and K. Sugamura. 2010. OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv. Immunol. 105: 63-98. https://doi.org/10.1016/S0065-2776(10)05003-0
  17. Ford, M. L., and C. P. Larsen. 2009. Translating costimulation blockade to the clinic: lessons learned from three pathways. Immunol. Rev. 229: 294-306. https://doi.org/10.1111/j.1600-065X.2009.00776.x
  18. Mace, T. A., S. A. King, Z. Ameen, O. Elnaggar, G. Young, K. M. Riedl, S. J. Schwartz, S. K. Clinton, T. J. Knobloch, C. M. Weghorst, and G. B. Lesinski. 2014. Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. Cancer Immunol. Immunother. 63: 889-900. https://doi.org/10.1007/s00262-014-1564-5
  19. Nicolaou, A., C. Mauro, P. Urquhart, and F. Marelli-Berg. 2014. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol. 5: 75.
  20. Arpaia, N., C. Campbell, X. Fan, S. Dikiy, d. van, V, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, and A. Y. Rudensky. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455. https://doi.org/10.1038/nature12726
  21. Benson, M. J., K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle. 2007. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204: 1765-1774. https://doi.org/10.1084/jem.20070719
  22. Kang, S. G., H. W. Lim, O. M. Andrisani, H. E. Broxmeyer, and C. H. Kim. 2007. Vitamin A metabolites induce gut-homing $FoxP3^+$ regulatory T cells. J. Immunol. 179: 3724-3733. https://doi.org/10.4049/jimmunol.179.6.3724
  23. Mucida, D., Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, and H. Cheroutre. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256-260. https://doi.org/10.1126/science.1145697
  24. Park, J., M. Kim, S. G. Kang, A. H. Jannasch, B. Cooper, J. Patterson, and C. H. Kim. 2014. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal. Immunol. doi: 10.1038/mi.2014.44.
  25. Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, Y. Bohlooly, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569-573. https://doi.org/10.1126/science.1241165
  26. Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, M. Takahashi, N. N. Fukuda, S. Murakami, E. Miyauchi, S. Hino, K. Atarashi, S. Onawa, Y. Fujimura, T. Lockett, J. M. Clarke, D. L. Topping, M. Tomita, S. Hori, O. Ohara, T. Morita, H. Koseki, J. Kikuchi, K. Honda, K. Hase, and H. Ohno. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450. https://doi.org/10.1038/nature12721
  27. Macfarlane, S., and G. T. Macfarlane. 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62: 67-72. https://doi.org/10.1079/PNS2002207
  28. Barcenilla, A., S. E. Pryde, J. C. Martin, S. H. Duncan, C. S. Stewart, C. Henderson, and H. J. Flint. 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66: 1654-1661. https://doi.org/10.1128/AEM.66.4.1654-1661.2000
  29. Charrier, C., G. J. Duncan, M. D. Reid, G. J. Rucklidge, D. Henderson, P. Young, V. J. Russell, R. I. Aminov, H. J. Flint, and P. Louis. 2006. A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria. Microbiology 152: 179-185. https://doi.org/10.1099/mic.0.28412-0
  30. Miller, T. L., and M. J. Wolin. 1996. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62: 1589-1592.
  31. Reichardt, N., S. H. Duncan, P. Young, A. Belenguer, L. C. McWilliam, K. P. Scott, H. J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME. J. 8: 1323-1335. https://doi.org/10.1038/ismej.2014.14
  32. Louis, P., G. L. Hold, and H. J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12: 661-672. https://doi.org/10.1038/nrmicro3344
  33. Li, H., L. Myeroff, D. Smiraglia, M. F. Romero, T. P. Pretlow, L. Kasturi, J. Lutterbaugh, R. M. Rerko, G. Casey, J. P. Issa, J. Willis, J. K. Willson, C. Plass, and S. D. Markowitz. 2003. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc. Natl. Acad. Sci. U. S. A. 100: 8412-8417. https://doi.org/10.1073/pnas.1430846100
  34. Miyauchi, S., E. Gopal, Y. J. Fei, and V. Ganapathy. 2004. Functional identification of SLC5A8, a tumor suppressor down-regulated in colon cancer, as a Na(+)-coupled transporter for short-chain fatty acids. J. Biol. Chem. 279: 13293-13296. https://doi.org/10.1074/jbc.C400059200
  35. Yanase, H., K. Takebe, J. Nio-Kobayashi, H. Takahashi-Iwanaga, and T. Iwanaga. 2008. Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney. Histochem. Cell Biol. 130: 957-966. https://doi.org/10.1007/s00418-008-0490-z
  36. Halestrap, A. P., X. Wang, R. C. Poole, V. N. Jackson, and N. T. Price. 1997. Lactate transport in heart in relation to myocardial ischemia. Am. J. Cardiol. 80: 17A-25A. https://doi.org/10.1016/S0002-9149(97)00454-2
  37. Eberle, J. A., P. Widmayer, and H. Breer. 2014. Receptors for short-chain fatty acids in brush cells at the "gastric groove". Front Physiol. 5: 152.
  38. Tazoe, H., Y. Otomo, S. Karaki, I. Kato, Y. Fukami, M. Terasaki, and A. Kuwahara. 2009. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30: 149-156. https://doi.org/10.2220/biomedres.30.149
  39. Nohr, M. K., M. H. Pedersen, A. Gille, K. L. Egerod, M. S. Engelstoft, A. S. Husted, R. M. Sichlau, K. V. Grunddal, S. S. Poulsen, S. Han, R. M. Jones, S. Offermanns, and T. W. Schwartz. 2013. GPR41/FFAR3 and GPR43/FFAR2 as co-sensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154: 3552-3564. https://doi.org/10.1210/en.2013-1142
  40. Kim, M. H., S. G. Kang, J. H. Park, M. Yanagisawa, and C. H. Kim. 2013. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145: 396-406. https://doi.org/10.1053/j.gastro.2013.04.056
  41. Wang, A., R. M. Akers, and H. Jiang. 2012. Short communication: Presence of G protein-coupled receptor 43 in rumen epithelium but not in the islets of Langerhans in cattle. J. Dairy Sci. 95: 1371-1375. https://doi.org/10.3168/jds.2011-4886
  42. Xiong, Y., N. Miyamoto, K. Shibata, M. A. Valasek, T. Motoike, R. M. Kedzierski, and M. Yanagisawa. 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U. S. A. 101: 1045-1050. https://doi.org/10.1073/pnas.2637002100
  43. Zaibi, M. S., C. J. Stocker, J. O'Dowd, A. Davies, M. Bellahcene, M. A. Cawthorne, A. J. Brown, D. M. Smith, and J. R. Arch. 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584: 2381-2386. https://doi.org/10.1016/j.febslet.2010.04.027
  44. Bahar, H. K., A. Veprik, N. Rubins, O. Naaman, and M. D. Walker. 2012. GPR41 gene expression is mediated by internal ribosome entry site (IRES)-dependent translation of bicistronic mRNA encoding GPR40 and GPR41 proteins. J. Biol. Chem. 287: 20154-20163. https://doi.org/10.1074/jbc.M112.358887
  45. Sina, C., O. Gavrilova, M. Forster, A. Till, S. Derer, F. Hildebrand, B. Raabe, A. Chalaris, J. Scheller, A. Rehmann, A. Franke, S. Ott, R. Hasler, S. Nikolaus, U. R. Folsch, S. Rose-John, H. P. Jiang, J. Li, S. Schreiber, and P. Rosenstiel. 2009. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183: 7514-7522. https://doi.org/10.4049/jimmunol.0900063
  46. Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M. Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, J. C. Strum, K. M. Steplewski, P. R. Murdock, J. C. Holder, F. H. Marshall, P. G. Szekeres, S. Wilson, D. M. Ignar, S. M. Foord, A. Wise, and S. J. Dowell. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278: 11312-11319. https://doi.org/10.1074/jbc.M211609200
  47. Voltolini, C., S. Battersby, S. L. Etherington, F. Petraglia, J. E. Norman, and H. N. Jabbour. 2012. A novel antiinflammatory role for the short-chain fatty acids in human labor. Endocrinology 153: 395-403. https://doi.org/10.1210/en.2011-1457
  48. Thangaraju, M., G. A. Cresci, K. Liu, S. Ananth, J. P. Gnanaprakasam, D. D. Browning, J. D. Mellinger, S. B. Smith, G. J. Digby, N. A. Lambert, P. D. Prasad, and V. Ganapathy. 2009. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69: 2826-2832. https://doi.org/10.1158/0008-5472.CAN-08-4466
  49. Pluznick, J. L., R. J. Protzko, H. Gevorgyan, Z. Peterlin, A. Sipos, J. Han, I. Brunet, L. X. Wan, F. Rey, T. Wang, S. J. Firestein, M. Yanagisawa, J. I. Gordon, A. Eichmann, J. Peti-Peterdi, and M. J. Caplan. 2013. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl. Acad. Sci. U. S. A. 110: 4410-4415. https://doi.org/10.1073/pnas.1215927110
  50. McCrudden, F. H., and H. L. Fales. 1913. The cause of the excessive calcium excretion through the feces in infantilism. J. Exp. Med. 17: 24-28. https://doi.org/10.1084/jem.17.1.24
  51. Zoller, H. F., and W. M. Clark. 1921. The production of volatile fatty acids by bacteria of the dysentery group. J. Gen. Physiol. 3: 325-330. https://doi.org/10.1085/jgp.3.3.325
  52. Topping, D. L., and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81: 1031-1064. https://doi.org/10.1152/physrev.2001.81.3.1031
  53. Finnie, I. A., A. D. Dwarakanath, B. A. Taylor, and J. M. Rhodes. 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36: 93-99. https://doi.org/10.1136/gut.36.1.93
  54. Tan, J., C. McKenzie, M. Potamitis, A. N. Thorburn, C. R. Mackay, and L. Macia. 2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121: 91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
  55. Tazoe, H., Y. Otomo, I. Kaji, R. Tanaka, S. I. Karaki, and A. Kuwahara. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 59 Suppl 2: 251-262.
  56. Wang, A., Z. Gu, B. Heid, R. M. Akers, and H. Jiang. 2009. Identification and characterization of the bovine G protein-coupled receptor GPR41 and GPR43 genes. J. Dairy Sci. 92: 2696-2705. https://doi.org/10.3168/jds.2009-2037
  57. Tazoe, H., Y. Otomo, S. Karaki, I. Kato, Y. Fukami, M. Terasaki, and A. Kuwahara. 2009. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30: 149-156. https://doi.org/10.2220/biomedres.30.149
  58. Le, P. E., C. Loison, S. Struyf, J. Y. Springael, V. Lannoy, M. E. Decobecq, S. Brezillon, V. Dupriez, G. Vassart, D. J. Van, M. Parmentier, and M. Detheux. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278: 25481-25489. https://doi.org/10.1074/jbc.M301403200
  59. Vinolo, M. A., G. J. Ferguson, S. Kulkarni, G. Damoulakis, K. Anderson, Y. Bohlooly, L. Stephens, P. T. Hawkins, and R. Curi. 2011. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS. One 6: e21205. https://doi.org/10.1371/journal.pone.0021205
  60. Cani, P. D., A. Everard, and T. Duparc. 2013. Gut microbiota, enteroendocrine functions and metabolism. Curr. Opin. Pharmacol. 13: 935-940. https://doi.org/10.1016/j.coph.2013.09.008
  61. Licciardi, P. V., K. Ververis, and T. C. Karagiannis. 2011. Histone deacetylase inhibition and dietary short-chain Fatty acids. ISRN. Allergy 2011: 869647.
  62. Yin, L., G. Laevsky, and C. Giardina. 2001. Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J. Biol. Chem. 276: 44641-44646. https://doi.org/10.1074/jbc.M105170200
  63. Eftimiadi, C., E. Buzzi, M. Tonetti, P. Buffa, D. Buffa, M. T. van Steenbergen, G. J. de, and G. A. Botta. 1987. Short-chain fatty acids produced by anaerobic bacteria alter the physiological responses of human neutrophils to chemotactic peptide. J. Infect. 14: 43-53. https://doi.org/10.1016/S0163-4453(87)90808-5
  64. Carretta, M. D., I. Conejeros, M. A. Hidalgo, and R. A. Burgos. 2013. Propionate induces the release of granules from bovine neutrophils. J. Dairy Sci. 96: 2507-2520. https://doi.org/10.3168/jds.2012-6111
  65. Luhrs, H., T. Gerke, J. G. Muller, R. Melcher, J. Schauber, F. Boxberge, W. Scheppach, and T. Menzel. 2002. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37: 458-466. https://doi.org/10.1080/003655202317316105
  66. Millard, A. L., P. M. Mertes, D. Ittelet, F. Villard, P. Jeannesson, and J. Bernard. 2002. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages. Clin. Exp. Immunol. 130: 245-255. https://doi.org/10.1046/j.0009-9104.2002.01977.x
  67. Park, J. S., E. J. Lee, J. C. Lee, W. K. Kim, and H. S. Kim. 2007. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int. Immunopharmacol. 7: 70-77. https://doi.org/10.1016/j.intimp.2006.08.015
  68. Kendrick, S. F., G. O'Boyle, J. Mann, M. Zeybel, J. Palmer, D. E. Jones, and C. P. Day. 2010. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51: 1988-1997. https://doi.org/10.1002/hep.23572
  69. Arora, T., R. Sharma, and G. Frost. 2011. Propionate. Anti-obesity and satiety enhancing factor? Appetite 56: 511-515. https://doi.org/10.1016/j.appet.2011.01.016
  70. Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, K. Katoh, S. G. Roh, and S. Sasaki. 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146: 5092-5099. https://doi.org/10.1210/en.2005-0545
  71. Ge, H., X. Li, J. Weiszmann, P. Wang, H. Baribault, J. L. Chen, H. Tian, and Y. Li. 2008. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149: 4519-4526. https://doi.org/10.1210/en.2008-0059
  72. Kimura, I., D. Inoue, T. Maeda, T. Hara, A. Ichimura, S. Miyauchi, M. Kobayashi, A. Hirasawa, and G. Tsujimoto. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U. S. A. 108: 8030-8035. https://doi.org/10.1073/pnas.1016088108
  73. Nancey, S., J. Bienvenu, B. Coffin, F. Andre, L. Descos, and B. Flourie. 2002. Butyrate strongly inhibits in vitro stimulated release of cytokines in blood. Dig. Dis. Sci. 47: 921-928. https://doi.org/10.1023/A:1014781109498
  74. Cavaglieri, C. R., A. Nishiyama, L. C. Fernandes, R. Curi, E. A. Miles, and P. C. Calder. 2003. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci. 73: 1683-1690. https://doi.org/10.1016/S0024-3205(03)00490-9
  75. Kurita-Ochiai, T., K. Fukushima, and K. Ochiai. 1995. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J. Dent. Res. 74: 1367-1373. https://doi.org/10.1177/00220345950740070801
  76. Zimmerman, M. A., N. Singh, P. M. Martin, M. Thangaraju, V. Ganapathy, J. L. Waller, H. Shi, K. D. Robertson, D. H. Munn, and K. Liu. 2012. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302: G1405-G1415. https://doi.org/10.1152/ajpgi.00543.2011
  77. Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, M. Takahashi, N. N. Fukuda, S. Murakami, E. Miyauchi, S. Hino, K. Atarashi, S. Onawa, Y. Fujimura, T. Lockett, J. M. Clarke, D. L. Topping, M. Tomita, S. Hori, O. Ohara, T. Morita, H. Koseki, J. Kikuchi, K. Honda, K. Hase, and H. Ohno. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450. https://doi.org/10.1038/nature12721
  78. Atarashi, K., T. Tanoue, K. Oshima, W. Suda, Y. Nagano, H. Nishikawa, S. Fukuda, T. Saito, S. Narushima, K. Hase, S. Kim, J. V. Fritz, P. Wilmes, S. Ueha, K. Matsushima, H. Ohno, B. Olle, S. Sakaguchi, T. Taniguchi, H. Morita, M. Hattori, and K. Honda. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236. https://doi.org/10.1038/nature12331
  79. Dennis, P. B., A. Jaeschke, M. Saitoh, B. Fowler, S. C. Kozma, and G. Thomas. 2001. Mammalian TOR: a homeostatic ATP sensor. Science 294: 1102-1105. https://doi.org/10.1126/science.1063518
  80. Delgoffe, G. M., T. P. Kole, Y. Zheng, P. E. Zarek, K. L. Matthews, B. Xiao, P. F. Worley, S. C. Kozma, and J. D. Powell. 2009. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30: 832-844. https://doi.org/10.1016/j.immuni.2009.04.014
  81. Chen, S., D. Liu, J. Wu, B. Xu, K. Lu, W. Zhu, and M. Chen. 2014. Effect of inhibiting the signal of mammalian target of rapamycin on memory T cells. Transplant. Proc. 46: 1642-1648. https://doi.org/10.1016/j.transproceed.2013.10.063
  82. Hinnebusch, B. F., S. Meng, J. T. Wu, S. Y. Archer, and R. A. Hodin. 2002. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132: 1012-1017. https://doi.org/10.1093/jn/132.5.1012
  83. Haberland, M., R. L. Montgomery, and E. N. Olson. 2009. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10: 32-42. https://doi.org/10.1038/nrg2485
  84. Yu, X., A. M. Shahir, J. Sha, Z. Feng, B. Eapen, S. Nithianantham, B. Das, J. Karn, A. Weinberg, N. F. Bissada, and F. Ye. 2014. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi's sarcoma-associated herpesvirus replication. J. Virol. 88: 4466-4479. https://doi.org/10.1128/JVI.03326-13
  85. Fenton, T. R., J. Gwalter, J. Ericsson, and I. T. Gout. 2010. Histone acetyltransferases interact with and acetylate p70 ribosomal S6 kinases in vitro and in vivo. Int. J. Biochem. Cell Biol. 42: 359-366. https://doi.org/10.1016/j.biocel.2009.11.022
  86. Singh, N., M. Thangaraju, P. D. Prasad, P. M. Martin, N. A. Lambert, T. Boettger, S. Offermanns, and V. Ganapathy. 2010. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J. Biol. Chem. 285: 27601-27608. https://doi.org/10.1074/jbc.M110.102947
  87. Wang, B., A. Morinobu, M. Horiuchi, J. Liu, and S. Kumagai. 2008. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol. 253: 54-58. https://doi.org/10.1016/j.cellimm.2008.04.016
  88. Nascimento, C. R., C. G. Freire-de-Lima, O. A. da Silva de, F. D. Rumjanek, and V. M. Rumjanek. 2011. The short chain fatty acid sodium butyrate regulates the induction of CD1a in developing dendritic cells. Immunobiology 216: 275-284. https://doi.org/10.1016/j.imbio.2010.07.004
  89. Berndt, B. E., M. Zhang, S. Y. Owyang, T. S. Cole, T. W. Wang, J. Luther, N. A. Veniaminova, J. L. Merchant, C. C. Chen, G. B. Huffnagle, and J. Y. Kao. 2012. Butyrate increases IL-23 production by stimulated dendritic cells. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G1384-G1392. https://doi.org/10.1152/ajpgi.00540.2011
  90. Frikeche, J., T. Simon, E. Brissot, M. Gregoire, B. Gaugler, and M. Mohty. 2012. Impact of valproic acid on dendritic cells function. Immunobiology 217: 704-710. https://doi.org/10.1016/j.imbio.2011.11.010
  91. Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, J. R. Lee, S. Offermanns, and V. Ganapathy. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139. https://doi.org/10.1016/j.immuni.2013.12.007
  92. Ananthakrishnan, A. N., H. Khalili, G. G. Konijeti, L. M. Higuchi, S. P. de, J. R. Korzenik, C. S. Fuchs, W. C. Willett, J. M. Richter, and A. T. Chan. 2013. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology 145: 970-977. https://doi.org/10.1053/j.gastro.2013.07.050
  93. Amre, D. K., S. D'Souza, K. Morgan, G. Seidman, P. Lambrette, G. Grimard, D. Israel, D. Mack, P. Ghadirian, C. Deslandres, V. Chotard, B. Budai, L. Law, E. Levy, and E. G. Seidman. 2007. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn's disease in children. Am. J. Gastroenterol. 102: 2016-2025. https://doi.org/10.1111/j.1572-0241.2007.01411.x
  94. Hou, J. K., B. Abraham, and H. El-Serag. 2011. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106: 563-573. https://doi.org/10.1038/ajg.2011.44
  95. Vieira, E. L., A. J. Leonel, A. P. Sad, N. R. Beltrao, T. F. Costa, T. M. Ferreira, A. C. Gomes-Santos, A. M. Faria, M. C. Peluzio, D. C. Cara, and J. I. varez-Leite. 2012. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J. Nutr. Biochem. 23: 430-436. https://doi.org/10.1016/j.jnutbio.2011.01.007
  96. Tarrerias, A. L., M. Millecamps, A. Alloui, C. Beaughard, J. L. Kemeny, S. Bourdu, G. Bommelaer, A. Eschalier, M. Dapoigny, and D. Ardid. 2002. Short-chain fatty acid enemas fail to decrease colonic hypersensitivity and inflammation in TNBS-induced colonic inflammation in rats. Pain 100: 91-97. https://doi.org/10.1016/S0304-3959(02)00234-8
  97. Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, R. J. Xavier, M. M. Teixeira, and C. R. Mackay. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282-1286. https://doi.org/10.1038/nature08530
  98. Masui, R., M. Sasaki, Y. Funaki, N. Ogasawara, M. Mizuno, A. Iida, S. Izawa, Y. Kondo, Y. Ito, Y. Tamura, K. Yanamoto, H. Noda, A. Tanabe, N. Okaniwa, Y. Yamaguchi, T. Iwamoto, and K. Kasugai. 2013. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm. Bowel. Dis. 19: 2848-2856. https://doi.org/10.1097/01.MIB.0000435444.14860.ea
  99. Hamer, H. M., D. M. Jonkers, S. A. Vanhoutvin, F. J. Troost, G. Rijkers, B. A. de, A. Bast, K. Venema, and R. J. Brummer. 2010. Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin. Nutr. 29: 738-744. https://doi.org/10.1016/j.clnu.2010.04.002
  100. Scheppach, W., H. Sommer, T. Kirchner, G. M. Paganelli, P. Bartram, S. Christl, F. Richter, G. Dusel, and H. Kasper. 1992. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103: 51-56. https://doi.org/10.1016/0016-5085(92)91094-K
  101. Vernia, P., A. Marcheggiano, R. Caprilli, G. Frieri, G. Corrao, D. Valpiani, M. C. Di Paolo, P. Paoluzi, and A. Torsoli. 1995. Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment. Pharmacol. Ther. 9: 309-313.
  102. Vernia, P., G. Monteleone, G. Grandinetti, G. Villotti, G. E. Di, G. Frieri, A. Marcheggiano, F. Pallone, R. Caprilli, and A. Torsoli. 2000. Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study. Dig. Dis. Sci. 45: 976-981. https://doi.org/10.1023/A:1005537411244
  103. Di, S. A., R. Morera, R. Ciccocioppo, P. Cazzola, S. Gotti, F. P. Tinozzi, S. Tinozzi, and G. R. Corazza. 2005. Oral butyrate for mildly to moderately active Crohn's disease. Aliment. Pharmacol. Ther. 22: 789-794. https://doi.org/10.1111/j.1365-2036.2005.02639.x
  104. Steinhart, A. H., T. Hiruki, A. Brzezinski, and J. P. Baker. 1996. Treatment of left-sided ulcerative colitis with butyrate enemas: a controlled trial. Aliment. Pharmacol. Ther. 10: 729-736. https://doi.org/10.1046/j.1365-2036.1996.d01-509.x
  105. Breuer, R. I., K. H. Soergel, B. A. Lashner, M. L. Christ, S. B. Hanauer, A. Vanagunas, J. M. Harig, A. Keshavarzian, M. Robinson, J. H. Sellin, D. Weinberg, D. E. Vidican, K. L. Flemal, and A. W. Rademaker. 1997. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis: a randomised, placebo controlled trial. Gut 40: 485-491. https://doi.org/10.1136/gut.40.4.485
  106. Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, and B. J. Marsland. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166. https://doi.org/10.1038/nm.3444
  107. Hadjiagapiou, C., L. Schmidt, P. K. Dudeja, T. J. Layden, and K. Ramaswamy. 2000. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am. J. Physiol. Gastrointest. Liver Physiol. 279: G775-G780. https://doi.org/10.1152/ajpgi.2000.279.4.G775
  108. Alrefai, W. A., S. Tyagi, R. Gill, S. Saksena, C. Hadjiagapiou, F. Mansour, K. Ramaswamy, and P. K. Dudeja. 2004. Regulation of butyrate uptake in Caco-2 cells by phorbol 12-myristate 13-acetate. Am. J. Physiol. Gastrointest. Liver Physiol. 286: G197-G203. https://doi.org/10.1152/ajpgi.00144.2003
  109. Ritzhaupt, A., A. Ellis, K. B. Hosie, and S. P. Shirazi-Beechey. 1998. The characterization of butyrate transport across pig and human colonic luminal membrane. J. Physiol. 507(Pt 3): 819-830. https://doi.org/10.1111/j.1469-7793.1998.819bs.x
  110. Gopal, E., Y. J. Fei, S. Miyauchi, L. Zhuang, P. D. Prasad, and V. Ganapathy. 2005. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem. J. 388: 309-316. https://doi.org/10.1042/BJ20041916
  111. Miyauchi, S., E. Gopal, E. Babu, S. R. Srinivas, Y. Kubo, N. S. Umapathy, S. V. Thakkar, V. Ganapathy, and P. D. Prasad. 2010. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter. Biochim. Biophys. Acta 1798: 1164-1171. https://doi.org/10.1016/j.bbamem.2010.03.002
  112. Thangaraju, M., G. Cresci, S. Itagaki, J. Mellinger, D. D. Browning, F. G. Berger, P. D. Prasad, and V. Ganapathy. 2008. Sodium-coupled transport of the short chain fatty acid butyrate by SLC5A8 and its relevance to colon cancer. J. Gastrointest. Surg. 12: 1773-1781. https://doi.org/10.1007/s11605-008-0573-0
  113. Gopal, E., Y. J. Fei, M. Sugawara, S. Miyauchi, L. Zhuang, P. Martin, S. B. Smith, P. D. Prasad, and V. Ganapathy. 2004. Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J. Biol. Chem. 279: 44522-44532. https://doi.org/10.1074/jbc.M405365200
  114. Martin, P. M., Y. Dun, B. Mysona, S. Ananth, P. Roon, S. B. Smith, and V. Ganapathy. 2007. Expression of the sodium-coupled monocarboxylate transporters SMCT1 (SLC5A8) and SMCT2 (SLC5A12) in retina. Invest. Ophthalmol. Vis. Sci. 48: 3356-3363. https://doi.org/10.1167/iovs.06-0888
  115. Martin, P. M., E. Gopal, S. Ananth, L. Zhuang, S. Itagaki, B. M. Prasad, S. B. Smith, P. D. Prasad, and V. Ganapathy. 2006. Identity of SMCT1 (SLC5A8) as a neuron-specific $Na^+$-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J. Neurochem. 98: 279-288. https://doi.org/10.1111/j.1471-4159.2006.03878.x
  116. Tolhurst, G., H. Heffron, Y. S. Lam, H. E. Parker, A. M. Habib, E. Diakogiannaki, J. Cameron, J. Grosse, F. Reimann, and F. M. Gribble. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61: 364-371. https://doi.org/10.2337/db11-1019
  117. Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, K. Katoh, S. G. Roh, and S. Sasaki. 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146: 5092-5099. https://doi.org/10.1210/en.2005-0545
  118. Dewulf, E. M., Q. Ge, L. B. Bindels, F. M. Sohet, P. D. Cani, S. M. Brichard, and N. M. Delzenne. 2013. Evaluation of the relationship between GPR43 and adiposity in human. Nutr. Metab. (Lond) 10: 11. https://doi.org/10.1186/1743-7075-10-11
  119. Tang, Y., Y. Chen, H. Jiang, G. T. Robbins, and D. Nie. 2011. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128: 847-856. https://doi.org/10.1002/ijc.25638
  120. Karaki, S., R. Mitsui, H. Hayashi, I. Kato, H. Sugiya, T. Iwanaga, J. B. Furness, and A. Kuwahara. 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324: 353-360. https://doi.org/10.1007/s00441-005-0140-x
  121. Nilsson, N. E., K. Kotarsky, C. Owman, and B. Olde. 2003. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303: 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
  122. Wanders, D., E. C. Graff, and R. L. Judd. 2012. Effects of high fat diet on GPR109A and GPR81 gene expression. Biochem. Biophys. Res. Commun. 425: 278-283. https://doi.org/10.1016/j.bbrc.2012.07.082
  123. Taggart, A. K., J. Kero, X. Gan, T. Q. Cai, K. Cheng, M. Ippolito, N. Ren, R. Kaplan, K. Wu, T. J. Wu, L. Jin, C. Liaw, R. Chen, J. Richman, D. Connolly, S. Offermanns, S. D. Wright, and M. G. Waters. 2005. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 280: 26649-26652. https://doi.org/10.1074/jbc.C500213200
  124. Ingersoll, M. A., S. Potteaux, D. Alvarez, S. B. Hutchison, R. N. van, and G. J. Randolph. 2012. Niacin inhibits skin dendritic cell mobilization in a GPR109A independent manner but has no impact on monocyte trafficking in atherosclerosis. Immunobiology 217: 548-557. https://doi.org/10.1016/j.imbio.2011.05.014
  125. Li, X., J. S. Millar, N. Brownell, F. Briand, and D. J. Rader. 2010. Modulation of HDL metabolism by the niacin receptor GPR109A in mouse hepatocytes. Biochem. Pharmacol. 80: 1450-1457. https://doi.org/10.1016/j.bcp.2010.07.023
  126. Bermudez, Y., C. A. Benavente, R. G. Meyer, W. R. Coyle, M. K. Jacobson, and E. L. Jacobson. 2011. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation. PLoS. One 6: e20487. https://doi.org/10.1371/journal.pone.0020487
  127. Xu, L. L., B. G. Stackhouse, K. Florence, W. Zhang, N. Shanmugam, I. A. Sesterhenn, Z. Zou, V. Srikantan, M. Augustus, V. Roschke, K. Carter, D. G. McLeod, J. W. Moul, D. Soppett, and S. Srivastava. 2000. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res. 60: 6568-6572.
  128. Weber, M., U. Pehl, H. Breer, and J. Strotmann. 2002. Olfactory receptor expressed in ganglia of the autonomic nervous system. J. Neurosci. Res. 68: 176-184. https://doi.org/10.1002/jnr.10164

피인용 문헌

  1. The human microbiome in hematopoiesis and hematologic disorders vol.126, pp.3, 2014, https://doi.org/10.1182/blood-2015-04-574392
  2. Bugs, genes, fatty acids, and serotonin: Unraveling inflammatory bowel disease? vol.4, pp.None, 2014, https://doi.org/10.12688/f1000research.6456.1
  3. Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates vol.6, pp.None, 2014, https://doi.org/10.3389/fimmu.2015.00512
  4. Essential roles of four-carbon backbone chemicals in the control of metabolism vol.6, pp.3, 2014, https://doi.org/10.4331/wjbc.v6.i3.223
  5. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells vol.309, pp.7, 2014, https://doi.org/10.1152/ajpgi.00186.2015
  6. Gut inflammation and microbiome in spondyloarthritis vol.36, pp.4, 2014, https://doi.org/10.1007/s00296-015-3414-y
  7. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice vol.10, pp.2, 2014, https://doi.org/10.1038/ismej.2015.114
  8. Olive oil and postprandial hyperlipidemia: implications for atherosclerosis and metabolic syndrome vol.7, pp.12, 2014, https://doi.org/10.1039/c6fo01422d
  9. Characteristic chromatographic fingerprint study of short-chain fatty acids in human milk, infant formula, pure milk and fermented milk by gas chromatography-mass spectrometry vol.67, pp.6, 2014, https://doi.org/10.1080/09637486.2016.1195798
  10. Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications vol.7, pp.43, 2014, https://doi.org/10.18632/oncotarget.12156
  11. Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of Familial Mediterranean Fever vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.00776
  12. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.01940
  13. 1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040508
  14. Yacon ( Smallanthus sonchifolius ) as a Food Supplement: Health-Promoting Benefits of Fructooligosaccharides vol.8, pp.7, 2014, https://doi.org/10.3390/nu8070436
  15. When pathogenic bacteria meet the intestinal microbiota vol.371, pp.1707, 2014, https://doi.org/10.1098/rstb.2015.0504
  16. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis vol.16, pp.None, 2014, https://doi.org/10.1186/s12885-016-2566-9
  17. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease vol.54, pp.6, 2017, https://doi.org/10.1007/s12035-016-0004-2
  18. Supplementation of Low- and High-fat Diets with Fermentable Fiber Exacerbates Severity of DSS-induced Acute Colitis : vol.23, pp.7, 2014, https://doi.org/10.1097/mib.0000000000001155
  19. New perspectives on the regulation of type II inflammation in asthma vol.6, pp.None, 2014, https://doi.org/10.12688/f1000research.11198.1
  20. β2→1-Fructans Modulate the Immune System In Vivo in a Microbiota-Dependent and -Independent Fashion vol.8, pp.None, 2014, https://doi.org/10.3389/fimmu.2017.00154
  21. The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System vol.8, pp.None, 2014, https://doi.org/10.3389/fimmu.2017.00417
  22. Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia? vol.11, pp.None, 2017, https://doi.org/10.3389/fnins.2017.00155
  23. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier vol.23, pp.1, 2014, https://doi.org/10.3748/wjg.v23.i1.60
  24. Colonic Absorption of Low-Molecular-Weight Metabolites Influenced by the Intestinal Microbiome: A Pilot Study vol.12, pp.1, 2014, https://doi.org/10.1371/journal.pone.0169207
  25. Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in vol.117, pp.1, 2014, https://doi.org/10.1017/s0007114516004268
  26. The paradox of painless periodontal disease vol.23, pp.4, 2017, https://doi.org/10.1111/odi.12537
  27. Dairy Propionibacteria: Versatile Probiotics vol.5, pp.2, 2014, https://doi.org/10.3390/microorganisms5020024
  28. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells vol.91, pp.16, 2014, https://doi.org/10.1128/jvi.01943-16
  29. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology vol.5, pp.5, 2014, https://doi.org/10.1128/microbiolspec.bad-0012-2016
  30. Blockade of αEβ7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo vol.66, pp.11, 2014, https://doi.org/10.1136/gutjnl-2016-312439
  31. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease vol.12, pp.15, 2014, https://doi.org/10.2217/fmb-2017-0059
  32. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance vol.9, pp.12, 2017, https://doi.org/10.3390/nu9121348
  33. Microbiota or short-chain fatty acids: which regulates diabetes? vol.15, pp.2, 2014, https://doi.org/10.1038/cmi.2017.57
  34. Alopecia areata and the gut-the link opens up for novel therapeutic interventions vol.22, pp.6, 2014, https://doi.org/10.1080/14728222.2018.1481504
  35. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.00890
  36. Altered Gut Microbiota in Myasthenia Gravis vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.02627
  37. Echinococcus granulosus Infection Results in an Increase in Eisenbergiella and Parabacteroides Genera in the Gut of Mice vol.9, pp.None, 2014, https://doi.org/10.3389/fmicb.2018.02890
  38. An overview on the interplay between nutraceuticals and gut microbiota vol.6, pp.None, 2014, https://doi.org/10.7717/peerj.4465
  39. Review of the health effects of berries and their phytochemicals on the digestive and immune systems vol.76, pp.1, 2014, https://doi.org/10.1093/nutrit/nux039
  40. The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications vol.25, pp.None, 2014, https://doi.org/10.2174/0929867325666180530102050
  41. Metabiotics: The Functional Metabolic Signatures of Probiotics: Current State-of-Art and Future Research Priorities-Metabiotics: Probiotics Effector Molecules vol.9, pp.4, 2014, https://doi.org/10.4236/abb.2018.94012
  42. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3 vol.11, pp.3, 2014, https://doi.org/10.1038/mi.2017.118
  43. Microbial metabolites, short‐chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice vol.48, pp.7, 2014, https://doi.org/10.1002/eji.201747122
  44. Anti-Inflammatory Effects of a Mixture of Lactic Acid Bacteria and Sodium Butyrate in Atopic Dermatitis Murine Model vol.21, pp.7, 2014, https://doi.org/10.1089/jmf.2017.4116
  45. Improved glucose metabolism by Eragrostis tef potentially through beige adipocyte formation and attenuating adipose tissue inflammation vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0201661
  46. Fecal microbiota associated with phytohaemagglutinin‐induced immune response in nestlings of a passerine bird vol.8, pp.19, 2014, https://doi.org/10.1002/ece3.4454
  47. Leaky brain in neurological and psychiatric disorders: Drivers and consequences vol.52, pp.10, 2018, https://doi.org/10.1177/0004867418796955
  48. The Mechanism and Application of Short-Chain Fatty Acids in Diabetes Mellitus vol.7, pp.4, 2014, https://doi.org/10.12677/hjfns.2018.74043
  49. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis vol.9, pp.1, 2014, https://doi.org/10.1038/s41467-018-05901-2
  50. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121912
  51. Could resistant starch supplementation improve inflammatory and oxidative stress biomarkers and uremic toxins levels in hemodialysis patients? A pilot randomized controlled trial vol.9, pp.12, 2014, https://doi.org/10.1039/c8fo01876f
  52. N-(1-carbamoyl-2-phenylethyl) butyramide reduces antibiotic-induced intestinal injury, innate immune activation and modulates microbiota composition vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-41295-x
  53. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-45311-y
  54. Beneficial effects of Lactobacillus reuteri 6475 on bone density in male mice is dependent on lymphocytes vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-51293-8
  55. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner vol.9, pp.1, 2014, https://doi.org/10.1038/s41398-019-0556-9
  56. Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications vol.10, pp.1, 2014, https://doi.org/10.1093/advances/nmy078
  57. The Differential Roles of T Cells in Non-alcoholic Fatty Liver Disease and Obesity vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.00082
  58. T-Cell-Driven Inflammation as a Mediator of the Gut-Brain Axis Involved in Parkinson's Disease vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.00239
  59. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease vol.7, pp.1, 2014, https://doi.org/10.3390/diseases7010021
  60. 16S rRNA gene profiling and genome reconstruction reveal community metabolic interactions and prebiotic potential of medicinal herbs used in neurodegenerative disease and as nootropics vol.14, pp.3, 2014, https://doi.org/10.1371/journal.pone.0213869
  61. Mikrobiom, Diabetes und Herz: neue Zusammenhänge? vol.44, pp.3, 2014, https://doi.org/10.1007/s00059-019-4791-x
  62. Role of the intestinal microbiome in autoimmune diseases and its use in treatments vol.339, pp.None, 2014, https://doi.org/10.1016/j.cellimm.2018.10.005
  63. Gut microbiota and health: connecting actors across the metabolic system vol.78, pp.2, 2019, https://doi.org/10.1017/s0029665118002719
  64. Man and the Microbiome: A New Theory of Everything? vol.15, pp.None, 2019, https://doi.org/10.1146/annurev-clinpsy-050718-095432
  65. Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes vol.19, pp.4, 2014, https://doi.org/10.1016/j.pan.2019.04.013
  66. Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production vol.10, pp.3, 2014, https://doi.org/10.1128/mbio.00935-19
  67. Roles of short-chain fatty acids in kidney diseases vol.132, pp.10, 2019, https://doi.org/10.1097/cm9.0000000000000228
  68. Gut Microbiome, Short-Chain Fatty Acids, and Mucosa Injury in Young Adults with Human Immunodeficiency Virus Infection vol.64, pp.7, 2014, https://doi.org/10.1007/s10620-018-5428-2
  69. The addition of cactus flour (Opuntia ficus indica) to the Western-style diet attenuates the onset of metabolic disorders in rats vol.49, pp.4, 2019, https://doi.org/10.1108/nfs-08-2018-0231
  70. Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43 vol.203, pp.1, 2014, https://doi.org/10.4049/jimmunol.1801068
  71. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy vol.234, pp.10, 2014, https://doi.org/10.1002/jcp.28436
  72. Microbiota Alterations in Alzheimer’s Disease: Involvement of the Kynurenine Pathway and Inflammation vol.36, pp.2, 2014, https://doi.org/10.1007/s12640-019-00057-3
  73. The role of short-chain fatty acids in microbiota-gut-brain communication vol.16, pp.8, 2014, https://doi.org/10.1038/s41575-019-0157-3
  74. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity vol.14, pp.8, 2014, https://doi.org/10.1371/journal.pone.0220642
  75. Role of Personalized Nutrition in Chronic-Degenerative Diseases vol.11, pp.8, 2014, https://doi.org/10.3390/nu11081707
  76. Microbiota Metabolite Butyrate Differentially Regulates Th1 and Th17 Cells’ Differentiation and Function in Induction of Colitis vol.25, pp.9, 2014, https://doi.org/10.1093/ibd/izz046
  77. The Mediterranean Diet and Cancer: What Do Human and Molecular Studies Have to Say about It? vol.11, pp.9, 2014, https://doi.org/10.3390/nu11092155
  78. The Microbiota-Gut-Brain Axis vol.99, pp.4, 2014, https://doi.org/10.1152/physrev.00018.2018
  79. Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls vol.9, pp.10, 2014, https://doi.org/10.3390/ani9100773
  80. Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation vol.9, pp.1, 2014, https://doi.org/10.1038/s41598-019-54098-x
  81. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis vol.16, pp.None, 2019, https://doi.org/10.1186/s12974-019-1434-3
  82. Invariant NKT Cells Functionally Link Microbiota-Induced Butyrate Production and Joint Inflammation vol.203, pp.12, 2014, https://doi.org/10.4049/jimmunol.1801314
  83. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease vol.20, pp.None, 2014, https://doi.org/10.2174/1568026620666200320113322
  84. The Microbiome and Alzheimer’s Disease: Potential and Limitations of Prebiotic, Synbiotic, and Probiotic Formulations vol.8, pp.None, 2020, https://doi.org/10.3389/fbioe.2020.537847
  85. Exploring the Molecular Mechanisms Underlying the Protective Effects of Microbial SCFAs on Intestinal Tolerance and Food Allergy vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.01225
  86. Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.01390
  87. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.02141
  88. Butyrate: A Review on Beneficial Pharmacological and Therapeutic Effect vol.16, pp.None, 2014, https://doi.org/10.2174/1573401316999201029210912
  89. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease vol.7, pp.None, 2014, https://doi.org/10.3389/fcvm.2020.00022
  90. Microbial insight into dietary protein source affects intestinal function of pigs with intrauterine growth retardation vol.59, pp.1, 2020, https://doi.org/10.1007/s00394-019-01910-z
  91. Diet complexity and l-threonine supplementation: effects on growth performance, immune response, intestinal barrier function, and microbial metabolites in nursery pigs vol.98, pp.5, 2014, https://doi.org/10.1093/jas/skaa125
  92. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bio vol.8, pp.6, 2014, https://doi.org/10.3390/microorganisms8060921
  93. Nutritional psychiatry in the treatment of psychotic disorders: Current hypotheses and research challenges vol.5, pp.None, 2014, https://doi.org/10.1016/j.bbih.2020.100070
  94. Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs vol.63, pp.2, 2014, https://doi.org/10.5194/aab-63-325-2020
  95. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders vol.20, pp.7, 2014, https://doi.org/10.1080/14737175.2020.1775585
  96. Anti-neuroinflammatory Effect of Short-Chain Fatty Acid Acetate against Alzheimer’s Disease via Upregulating GPR41 and Inhibiting ERK/JNK/NF-κB vol.68, pp.27, 2014, https://doi.org/10.1021/acs.jafc.0c02807
  97. Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study vol.59, pp.5, 2014, https://doi.org/10.1007/s00394-019-02050-0
  98. Impact of Protein Intake in Older Adults with Sarcopenia and Obesity: A Gut Microbiota Perspective vol.12, pp.8, 2014, https://doi.org/10.3390/nu12082285
  99. Gut Microbiota and Disorders of the Central Nervous System vol.26, pp.5, 2014, https://doi.org/10.1177/1073858420918826
  100. Microbiota and Diabetes Mellitus: Role of Lipid Mediators vol.12, pp.10, 2014, https://doi.org/10.3390/nu12103039
  101. Metabolism of short‐chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells vol.34, pp.11, 2014, https://doi.org/10.1096/fj.202000162r
  102. Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer’s Disease vol.10, pp.11, 2014, https://doi.org/10.3390/brainsci10110814
  103. How does spaceflight affect the acquired immune system? vol.6, pp.None, 2014, https://doi.org/10.1038/s41526-020-0104-1
  104. Adiponectin Role in Neurodegenerative Diseases: Focus on Nutrition Review vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21239255
  105. Blautia-a new functional genus with potential probiotic properties? vol.13, pp.1, 2021, https://doi.org/10.1080/19490976.2021.1875796
  106. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry vol.8, pp.None, 2014, https://doi.org/10.3389/fvets.2021.736739
  107. A New Formulation of Probiotics Attenuates Calcipotriol-Induced Dermatitis by Inducing Regulatory Dendritic Cells vol.12, pp.None, 2014, https://doi.org/10.3389/fimmu.2021.775018
  108. Changes in gut microbiota composition and their associations with cortisol, melatonin and interleukin 6 in patients with chronic insomnia vol.2021, pp.2021, 2014, https://doi.org/10.24075/brsmu.2021.017
  109. Altered Fecal Microbiota Correlated With Systemic Inflammation in Male Subjects With Methamphetamine Use Disorder vol.11, pp.None, 2014, https://doi.org/10.3389/fcimb.2021.783917
  110. The Role of the Gut Microbiome in Pathogenesis, Biology, and Treatment of Plasma Cell Dyscrasias vol.11, pp.None, 2014, https://doi.org/10.3389/fonc.2021.741376
  111. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease vol.13, pp.3, 2014, https://doi.org/10.3390/nu13030732
  112. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? vol.13, pp.3, 2021, https://doi.org/10.3390/nu13030870
  113. Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion vol.341, pp.1, 2014, https://doi.org/10.1016/j.foodchem.2020.128237
  114. Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence vol.26, pp.7, 2014, https://doi.org/10.3390/molecules26072090
  115. Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy vol.13, pp.4, 2014, https://doi.org/10.3390/nu13041244
  116. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids vol.18, pp.5, 2014, https://doi.org/10.1038/s41423-020-00625-0
  117. Isovaleric acid ameliorates ovariectomy‐induced osteoporosis by inhibiting osteoclast differentiation vol.25, pp.9, 2014, https://doi.org/10.1111/jcmm.16482
  118. Food intake and its effect on the species and abundance of intestinal flora in colorectal cancer and healthy individuals vol.36, pp.3, 2014, https://doi.org/10.3904/kjim.2019.373
  119. Butyrate: A Link between Early Life Nutrition and Gut Microbiome in the Development of Food Allergy vol.11, pp.5, 2021, https://doi.org/10.3390/life11050384
  120. Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression vol.9, pp.5, 2014, https://doi.org/10.3390/microorganisms9051021
  121. Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma vol.13, pp.11, 2014, https://doi.org/10.3390/cancers13112810
  122. Combination of Bifidobacterium longum and Galacto-Oligosaccharide Protects the Skin from Photoaging vol.24, pp.6, 2014, https://doi.org/10.1089/jmf.2021.k.0032
  123. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism vol.12, pp.3, 2014, https://doi.org/10.3920/bm2020.0148
  124. Importance of “muscle” and “intestine” training before major HPB surgery: A review vol.28, pp.7, 2021, https://doi.org/10.1002/jhbp.835
  125. Obesity-Induced Dysbiosis Exacerbates IFN-γ Production and Pulmonary Inflammation in the Mycobacterium tuberculosis Infection vol.10, pp.7, 2014, https://doi.org/10.3390/cells10071732
  126. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier vol.22, pp.14, 2014, https://doi.org/10.3390/ijms22147613
  127. Lactobacillus plantarum HAC01 ameliorates type 2 diabetes in high-fat diet and streptozotocin-induced diabetic mice in association with modulating the gut microbiota vol.12, pp.14, 2014, https://doi.org/10.1039/d1fo00698c
  128. Ginsenoside Rk3 alleviates gut microbiota dysbiosis and colonic inflammation in antibiotic-treated mice vol.146, pp.None, 2021, https://doi.org/10.1016/j.foodres.2021.110465
  129. Intestinal microbiota and kidney diseases vol.40, pp.3, 2021, https://doi.org/10.23876/j.krcp.21.053
  130. The consequences of altered microbiota in immune-related chronic kidney disease vol.36, pp.10, 2014, https://doi.org/10.1093/ndt/gfaa087
  131. Microbiomics in Collusion with the Nervous System in Carcinogenesis: Diagnosis, Pathogenesis and Treatment vol.9, pp.10, 2021, https://doi.org/10.3390/microorganisms9102129
  132. The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections vol.89, pp.11, 2014, https://doi.org/10.1128/iai.00376-21
  133. Melatonin-Mediated Colonic Microbiota Metabolite Butyrate Prevents Acute Sleep Deprivation-Induced Colitis in Mice vol.22, pp.21, 2021, https://doi.org/10.3390/ijms222111894
  134. A Citrus Fruit Extract High in Polyphenols Beneficially Modulates the Gut Microbiota of Healthy Human Volunteers in a Validated In Vitro Model of the Colon vol.13, pp.11, 2014, https://doi.org/10.3390/nu13113915
  135. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome vol.12, pp.1, 2021, https://doi.org/10.1038/s41467-021-21295-0
  136. Intestinal Barrier and Permeability in Health, Obesity and NAFLD vol.10, pp.1, 2014, https://doi.org/10.3390/biomedicines10010083
  137. Dual role of microbiota-derived short-chain fatty acids on host and pathogen vol.145, pp.None, 2014, https://doi.org/10.1016/j.biopha.2021.112352
  138. Effect of dehydration and butter-frying on chinicuil (Comadia redtenbacheri Hammershmidt) and maguey white worm (Aegiale hesperiaris Walker) vol.8, pp.1, 2014, https://doi.org/10.3920/jiff2020.0154
  139. The role of short-chain fatty acids in immunity, inflammation and metabolism vol.62, pp.1, 2014, https://doi.org/10.1080/10408398.2020.1854675