DOI QR코드

DOI QR Code

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung (Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Shin, Joo-Hyun (Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Park, Young-Seok (Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Chang, Mi-Sook (Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2014.06.30
  • 심사 : 2014.09.22
  • 발행 : 2014.12.31

초록

Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

키워드

참고문헌

  1. Arevalo J.C., Yano H., Teng K.K., and Chao M.V. (2004). A unique pathway for sustained neurotrophin signaling through an ankyrin-rich membrane-spanning protein. EMBO J. 23, 2358-2368. https://doi.org/10.1038/sj.emboj.7600253
  2. Arevalo J.C., Pereira D.B., Yano H., Teng K.K., and Chao M.V. (2006). Identification of a switch in neurotrophin signaling by selective tyrosine phosphorylation. J. Biol. Chem. 281, 1001-1007. https://doi.org/10.1074/jbc.M504163200
  3. Arevalo, J.C., Wu, S.H., Takahashi, T., Zhang, H., Yu, T., Yano, H., Milner, T.A., Tessarollo, L., Ninan, I., Arancio, O., et al. (2010). The ARMS/Kidins220 scaffold protein modulates synaptic transmission. Mol. Cell Neurosci. 45, 92-100. https://doi.org/10.1016/j.mcn.2010.06.002
  4. Baldin, V., Lukas, J., Marcote, M.J., Pagano, M., and Draetta, G. (1993). Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812-821. https://doi.org/10.1101/gad.7.5.812
  5. Bates, S., Parry, D., Bonetta, L., Vousden, K., Dickson, C., and Peters, G. (1994). Absence of cyclin D/cdk complexes in cells lacking functional retinoblastoma protein. Oncogene 9, 1633-1640.
  6. Besson, A., Dowdy, S.F., and Roberts, J.M. (2008). CDK inhibitors: cell cycle regulators and beyond. Dev. Cell 14, 159-169. https://doi.org/10.1016/j.devcel.2008.01.013
  7. Bracale A., Cesca F., Neubrand V.E., Newsome T.P., Way M., and Schiavo G. (2007). Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation. Mol. Biol. Cell 18, 142-152.
  8. Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243-247. https://doi.org/10.1016/S1535-6108(02)00122-8
  9. Cesca F., Yabe A., Spencer-Dene B., Scholz-Starke J., Medrihan L., Maden C.H., Orriss I.R., Baldelli P., AI-Qatari M., Koltzenburg M., et al. (2012). Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death Differ.19, 194-208 https://doi.org/10.1038/cdd.2011.141
  10. Chang, M.S., Arevalo, J.C., and Chao, M.V. (2004). Ternary complex with Trk, p75, and an ankyrin-rich membrane spanning protein. J. Neurosci. Res. 78, 186-192. https://doi.org/10.1002/jnr.20262
  11. Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299-309. https://doi.org/10.1038/nrn1078
  12. Chen, P.L., Scully, P., Shew, J.Y., Wang, J.Y., and Lee, W.H. (1989). Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58, 1193-1198. https://doi.org/10.1016/0092-8674(89)90517-5
  13. Chen Y., Fu W.Y., Ip J.P., Ye T., Fu A.K., Chao M.V., and Ip N.Y. (2012). Ankyrin repeat-rich membrane spanning protein (kidins220) is required for neurotrophin and ephrin receptordependent dendrite development. J. Neurosci. 32, 8263-8269. https://doi.org/10.1523/JNEUROSCI.1264-12.2012
  14. Cortes R.Y., Arevalo J.C., Magby J.P., Chao M.V., and Plummer M.R. (2007). Developmental and activity-dependent regulation of ARMS/Kidins220 in cultured rat hippocampal neurons. Dev. Neurobiol. 67, 1687-1698. https://doi.org/10.1002/dneu.20542
  15. Dulic V., Kaufmann W.K., Wilson S.J., Tlsty T.D., Lees E., Harper J.W., Elledge S.J., and Reed S.I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023. https://doi.org/10.1016/0092-8674(94)90379-4
  16. Duffy A.M., Schaner M.J., Wu S.H., Staniszewski A., Kumar A., Arevalo J.C., Arancio O., Chao M.V., and Sharfman H.E. (2011). A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons. Exp. Neurol. 229, 409-420. https://doi.org/10.1016/j.expneurol.2011.03.008
  17. El-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., and Vogelstein B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825. https://doi.org/10.1016/0092-8674(93)90500-P
  18. Furuno N., den Elzen N., and Pines J. (1999). Human cyclin A is required for mitosis until mid prophase. J. Cell Biol. 147, 295-306. https://doi.org/10.1083/jcb.147.2.295
  19. Harper J.W., Adami G.R., Wei N., Keyomarsi K., and Elledge S.J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
  20. Higuero, A. M., Sanchez-Ruiloba, L., Doglio, L. E., Portillo, F., Abad-Rodriguez, J., Dotti, C.G., and Iglesias, T. (2010). Kidins220/ARMS modulates the activity of microtubule-regulating proteins and controls neuronal polarity and development. J. Biol. Chem. 285, 1343-1357. https://doi.org/10.1074/jbc.M109.024703
  21. Iglesias T., Cabrera-Poch N., Mitchell M.P., Naven T.J., Rozengurt E., and Schiavo G. (2000). Identification and cloning of Kidins220, a novel neuronal substrate of protein kinase D. J. Biol. Chem. 275, 40048-40056. https://doi.org/10.1074/jbc.M005261200
  22. Jadhav, U., Ezhilarasan, R., Vaughn, S.F., Berhow, M.A., and Mohanam, S. (2007). Iberin induces cell cycle arrest and apoptosis in human neuroblastoma cells. Int. J. Mol. Med. 19, 353-361.
  23. Jiao, W., Datta, J., Lin, H.M., Dundr, M., and Rane, S.G. (2006). Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J. Biol. Chem. 281, 38098-38108. https://doi.org/10.1074/jbc.M605271200
  24. Kong, H., Boulter, J., Weber, J.L., Lai, C., and Chao, M.V. (2001). An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci. 21, 176-185.
  25. Li, J., Chen, L. A., Townsend, C. M., Jr., and Evers, B.M. (2008). PKD1, PKD2, and their substrate Kidins220 regulate neurotensin secretion in the BON human endocrine cell line. J. Biol. Chem. 283, 2614-2621. https://doi.org/10.1074/jbc.M707513200
  26. Liao, Y.H., Hsu, S.M., and Huang, P.H. (2007). ARMS depletion facilitates UV irradiation induced apoptotic cell death in melanoma. Cancer Res. 67, 11547-11556. https://doi.org/10.1158/0008-5472.CAN-07-1930
  27. Liao, Y.H., Hsu, S.M., Yang, H.L., Tsai, M.S., and Huang, P.H. (2011). Upregulated ankyrin repeat-rich membrane spanning protein contributes to tumour progression in cutaneous melanoma. Br. J. Cancer 104, 982-988. https://doi.org/10.1038/bjc.2011.18
  28. Lopez-Menendez, C., Gascon, S., Sobrado, M., Vidaurre, O.G., Higuero, A.M., Rodriguez-Pena, A., Iglesias, T., and Diaz-Guerra, M. (2009). Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways. J. Cell Sci. 122, 3554-3565. https://doi.org/10.1242/jcs.056473
  29. Malumbres, M., and Barbacid, M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. https://doi.org/10.1038/nrc2602
  30. Martin-Zanca D., Hughes S.H., and Barbacid M. (1986). A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743-748. https://doi.org/10.1038/319743a0
  31. Masamha C.P., and Benbrook D.M. (2009). Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells. Cancer Res. 69, 6565-6572. https://doi.org/10.1158/0008-5472.CAN-09-0913
  32. Neubrand V.E., Thomas C., Schmidt S., Debant A., and Schiavo G. (2010). Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. J. Cell Sci. 123, 2111-2123. https://doi.org/10.1242/jcs.064055
  33. Neubrand, V.E., Cesca, F., Benfenati, F., and Schiavo, G. (2012). Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. J. Cell Sci. 125, 1845-1854. https://doi.org/10.1242/jcs.102764
  34. Park, H.J., Park, H.W., Lee, S.J., Arevalo, J.C., Park, Y.S., Lee, S.P., Paik, K.S., Chao, M.V., and Chang, M.S. (2010). Ankyrin repeat-rich membrane spanning/Kidins220 protein interacts with mammalian Septin 5. Mol. Cells 30, 143-148. https://doi.org/10.1007/s10059-010-0099-7
  35. Rogers D.A., and Schor N.F. (2013). Kidins220/ARMS depletion is associated with the neural-to Schwann-like transition in a human neuroblastoma cell line model. Exp. Cell Res. 319, 660-669. https://doi.org/10.1016/j.yexcr.2012.12.027
  36. Sherr, C.J. (1995). Mammalian G1 cyclins and cell cycle progression. Proc. Assoc. Am. Physicians 107, 181-186.
  37. Sniderhan, L.F., Stout, A., Lu, Y., Chao, M.V., and Maggirwar, S.B. (2008). Ankyrin-rich membrane spanning protein plays a critical role in nuclear factor-kappa B signaling. Mol. Cell Neurosci. 38, 404-416. https://doi.org/10.1016/j.mcn.2008.04.001
  38. Sutachan J.J., Chao M.V., and Ninan I. (2010). Regulation of inhibitory neurotransmission by the scaffolding protein ankyrin repeat-rich membrane spanning/kinase D-interacting substrate of 220 kDa. J. Neurosci. Res. 88, 3447-3456. https://doi.org/10.1002/jnr.22513
  39. Wu S.H., Arevalo J.C., Sarti F., Tessarollo L., Gan W.B., and Chao M.V. (2009). Ankyrin Repeat-rich Membrane Spanning/Kidins220 protein regulates dendritic branching and spine stability in vivo. Dev. Neurobiol. 69, 547-557. https://doi.org/10.1002/dneu.20723
  40. Wu S.H., Arevalo J.C., Neubrand V.E., Zhang H., Arancio O., and Chao M.V. (2010). The ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein is regulated by activity-dependent calpain proteolysis and modulates synaptic plasticity. J. Biol. Chem. 285, 40472-40478. https://doi.org/10.1074/jbc.M110.171371
  41. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. (1993a). p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704. https://doi.org/10.1038/366701a0
  42. Xiong, Y., Zhang, H., and Beach, D. (1993b). Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7, 1572-1583. https://doi.org/10.1101/gad.7.8.1572

피인용 문헌

  1. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS vol.10, 2016, https://doi.org/10.3389/fncel.2016.00068
  2. Kidins220 and tumour development: Insights into a complexity of cross-talk among signalling pathways (Review) vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3093
  3. Functions of the multi-interacting protein KIDINS220/ARMS in cancer and other pathologies vol.57, pp.3, 2018, https://doi.org/10.1002/gcc.22514
  4. Kidins220/ARMS Expression Confers Proliferation But Independent of Self-Renewal in Mouse Embryonic Stem Cells vol.20, pp.6, 2014, https://doi.org/10.1089/cell.2018.0026
  5. YAP promotes the proliferation of neuroblastoma cells through decreasing the nuclear location of p27Kip1 mediated by Akt vol.53, pp.2, 2014, https://doi.org/10.1111/cpr.12734
  6. Kidins220/ARMS controls astrocyte calcium signaling and neuron-astrocyte communication vol.27, pp.5, 2020, https://doi.org/10.1038/s41418-019-0431-5