참고문헌
- Achille, A., Biasi, M.O., Zamboni, G., Bogina, G., Magalini, A.R., Pederzoli, P., Perucho, M., and Scarpa, A. (1996). Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res. 56, 3808-3813.
- Bieche, I., Champeme, M.H., Matifas, F., Hacene, K., Callahan, R., and Lidereau, R. (1992). Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339, 139-143. https://doi.org/10.1016/0140-6736(92)90208-K
- Borel, C., and Antonarakis, S.E. (2008). Functional genetic variation of human miRNAs and phenotypic consequences. Mamm. Genome 19, 503-509. https://doi.org/10.1007/s00335-008-9137-6
- Calin, G.A., and Croce, C.M. (2006). MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866. https://doi.org/10.1038/nrc1997
- Corcoran, M.M., Mould, S.J., Orchard, J.A., Ibbotson, R.E., Chapman, R.M., Boright, A.P., Platt, C., Tsui, L.C., Scherer, S.W., and Oscier, D.G. (1999). Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene 18, 6271-6277. https://doi.org/10.1038/sj.onc.1203033
- Dubecz, A., Gall, I., Solymosi, N., Schweigert, M., Peters, J.H., Feith, M., and Stein, H.J. (2012). Temporal trends in long-term survival and cure rates in esophageal cancer: a seer database analysis. J. Thorac. Oncol. 7, 443-447. https://doi.org/10.1097/JTO.0b013e3182397751
- Eto, K., Goto, S., Nakashima, W., Ura, Y., and Abe, S.I. (2012). Loss of programmed cell death 4 induces apoptosis by promoting the translation of procaspase-3 mRNA. Cell Death Differ. 19, 573-581. https://doi.org/10.1038/cdd.2011.126
- Fang, L., Du, W.W., Yang, W.N., Rutnam, Z.J., Peng, C., Li, H.R., O'Malley, Y.Q., Askeland, R.W., Sugg, S., Liu, M.Y., et al. (2012). MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 11, 4352-4365. https://doi.org/10.4161/cc.22670
- Fassan, M., Cagol, M., Pennelli, G., Rizzetto, C., Giacomelli, L., Battaglia, G., Zaninotto, G., Ancona, E., Ruol, A., and Rugge, M. (2010). Programmed cell death 4 protein in esophageal cancer. Oncol. Rep. 24, 135-139.
- Fassan, M., Realdon, S., Pizzi, M., Balistreri, M., Battaglia, G., Zaninotto, G., Ancona, E., and Rugge, M. (2012). Programmed cell death 4 nuclear loss and miR-21 or activated Akt overexpression in esophageal squamous cell carcinogenesis. Dis. Esophagus 25, 263-268. https://doi.org/10.1111/j.1442-2050.2011.01236.x
- Frankel, L.B., Christoffersen, N.R., Jacobsen, A., Lindow, M., Krogh, A., and Lund, A.H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283, 1026-1033. https://doi.org/10.1074/jbc.M707224200
- Gaur, A.B., Holbeck, S.L., Colburn, N.H., and Israel, M.A. (2011). Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 13, 580-590. https://doi.org/10.1093/neuonc/nor033
- Guo, X., Li, W., Wang, Q., and Yang, H.S. (2011). AKT activation by Pdcd4 knockdown up-regulates cyclin D1 expression and promotes cell proliferation. Genes Cancer 2, 818-828. https://doi.org/10.1177/1947601911431082
- Guo, P., Huang, Z.L., Yu, P., and Li, K. (2012). Trends in cancer mortality in China: an update. Ann. Oncol. 23, 2755-2762. https://doi.org/10.1093/annonc/mds069
- Han, Y., Chen, J., Zhao, X., Liang, C., Wang, Y., Sun, L., Jiang, Z., Zhang, Z., Yang, R., Li, Z., et al. (2011). MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6, e18286. https://doi.org/10.1371/journal.pone.0018286
- He, J., and Chen, W. (2012). Chinese Cancer Registry Annual Report (Beijing, China: Military Medical Sciences Press).
- Hu, Y., Correa, A.M., Hoque, A., Guan, B., Ye, F., Huang, J., Swisher, S.G., Wu, T.T., Ajani, J.A., and Xu, X.C. (2011). Prognostic significance of differentially expressed miRNAs in esophageal cancer. Int. J. Cancer 128, 132-143. https://doi.org/10.1002/ijc.25330
- Hvid-Jensen, F., Pedersen, L., Drewes, A.M., Sorensen, H.T., and Funch-Jensen, P. (2011). Incidence of adenocarcinoma among patients with Barrett's esophagus. N. Engl. J. Med. 365, 1375-1383. https://doi.org/10.1056/NEJMoa1103042
- Jiang, Y., Zhang, S.H., Han, G.Q., and Qin, C.Y. (2010). Interaction of Pdcd4 with eIF4E inhibits the metastatic potential of hepatocellular carcinoma. Biomed. Pharmacother. 64, 424-429. https://doi.org/10.1016/j.biopha.2010.01.015
- Koo, S.H., Ihm, C.H., Kwon, K.C., Park, J.W., Kim, J.M., and Kong, G. (2001). Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet. Cytogenet. 130, 22-28. https://doi.org/10.1016/S0165-4608(01)00460-5
- Kwong, D., Lam, A., Guan, X., Law, S., Tai, A., Wong, J., and Sham, J. (2004). Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: Gain of 12p predicts poor prognosis after surgery. Hum. Pathol. 35, 309-316. https://doi.org/10.1016/j.humpath.2003.10.020
- Lankat-Buttgereit, B., and Goke, R. (2009). The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol. Cell 101, 309-317. https://doi.org/10.1042/BC20080191
-
Li, G.R., Luna, C., Qiu, J.M., Epstein, D.L., and Gonzalez, P. (2010a). Targeting of integrin
${\beta}1$ and kinesin$2{\alpha}$ by microRNA 183. J. Biol. Chem. 285, 5461-5471. https://doi.org/10.1074/jbc.M109.037127 - Li, J., Fu, H., Xu, C., Tie, Y., Xing, R., Zhu, J., Qin, Y., Sun, Z., and Zheng, X. (2010b). miR-183 inhibits TGF-beta1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells. BMC Cancer 10, 354. https://doi.org/10.1186/1471-2407-10-354
- Lin, Y., Totsuka, Y., He, Y., Kikuchi, S., Qiao, Y., Ueda, J., Wei, W., Inoue, M., and Tanaka, H. (2013). Epidemiology of esophageal cancer in Japan and China. J. Epidemiol. 23, 233-242. https://doi.org/10.2188/jea.JE20120162
-
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-
$^{-{\Delta}{\Delta}Ct}$ method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262 - Ma, G., Zhang, H., Dong, M., Zheng, X.Y., Ozaki, I., Matsuhashi, S., and Guo, K.J. (2013). Downregulation of programmed cell death 4 (PDCD4) in tumorigenesis and progression of human digestive tract cancers. Tumor Biol. 34, 3879-3885. https://doi.org/10.1007/s13277-013-0975-9
- Matsuhashi, S., Hamajima, H., Xia, J.H., Zhang, H., Mizuta, T., Anzai, K., and Ozaki, I. (2014). Control of a tumor suppressor PDCD4: Degradation mechanisms of the protein in hepatocellular carcinoma cells. Cell. Signal. 26, 603-610. https://doi.org/10.1016/j.cellsig.2013.11.038
- Patil, V.S., Zhou, R., and Rana, T.M. (2014). Gene regulation by non-coding RNAs. Crit. Rev. Biochem. Mol. Biol. 49, 16-32. https://doi.org/10.3109/10409238.2013.844092
- Reis, P.P., Tomenson, M., Cervigne, N.K., Machado, J., Jurisica, I., Pintilie, M., Sukhai, M.A., Perez-Ordonez, B., Grenman, R., Gilbert, R.W., et al. (2010). Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol. Cancer 9, 238. https://doi.org/10.1186/1476-4598-9-238
- Salic, A., and Mitchison, T.J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415-2420. https://doi.org/10.1073/pnas.0712168105
- Santhanam, A.N., Baker, A.R., Hegamyer, G., Kirschmann, D.A., and Colburn, N.H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene 29, 3921-3932. https://doi.org/10.1038/onc.2010.158
- Sarver, A.L., Li, L.H., and Subramanian, S. (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 70, 9570-9580. https://doi.org/10.1158/0008-5472.CAN-10-2074
- Shibahara, K., Asano, M., Ishida, Y., Aoki, T., Koike, T., and Honjo, T. (1995). Isolation of a novel mouse gene MA-3 that is induced upon programmed cell death. Gene 166, 297-301. https://doi.org/10.1016/0378-1119(95)00607-9
- Tanaka, H., Sasayama, T., Tanaka, K., Nakamizo, S., Nishihara, M., Mizukawa, K., Kohta, M., Koyama, J., Miyake, S., Taniguchi, M., et al. (2013). MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J. Neuro-Oncol. 111, 273-283. https://doi.org/10.1007/s11060-012-1027-9
- Thomson, D.W., Bracken, C.P., and Goodall, G.J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845-6853. https://doi.org/10.1093/nar/gkr330
- Ueno, K., Hirata, H., Shahryari, V., Deng, G., Tanaka, Y., Tabatabai, Z.L., Hinoda, Y., and Dahiya, R. (2013). microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br. J. Cancer 108, 1659-1667. https://doi.org/10.1038/bjc.2013.125
- Wang, W., Zhao, J., Wang, H., Sun, Y., Peng, Z., Zhou, G., Fan, L., Wang, X., Yang, S., Wang, R., et al. (2010). Programmed cell death 4 (PDCD4) mediates the sensitivity of gastric cancer cells to TRAIL-induced apoptosis by down-regulation of FLIP expression. Exp. Cell Res. 316, 2456-2464. https://doi.org/10.1016/j.yexcr.2010.05.027
- Wei, N., Liu, S.S., Chan, K.K.L., and Ngan, H.Y.S. (2012). Tumour suppressive function and modulation of programmed Cell Death 4 (PDCD4) in ovarian cancer. PLoS One 7, e30311 . https://doi.org/10.1371/journal.pone.0030311
- Yang, M., Liu, R., Sheng, J.Y., Liao, J., Wang, Y., Pan, E.C., Guo, W., Pu, Y.P., and Yin, L.H. (2013). Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma. Oncol. Rep. 29, 169-176. https://doi.org/10.3892/or.2012.2105
- Zhang, H., OzakiZ, I., Mizuta, T., Hamajima, H., Yasutake, T., Eguchi, Y., Ideguchi, H., Yamamoto, K., and Matsuhashi, S. (2006). Involvement of programmed cell death 4 in transforming growth factor-beta 1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25, 6101-6112. https://doi.org/10.1038/sj.onc.1209634
- Zhang, S.H., Li, J.F., Jiang, Y., Xu, Y.J., and Qin, C.Y. (2009). Programmed cell death 4 (PDCD4) suppresses metastastic potential of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 28, 71. https://doi.org/10.1186/1756-9966-28-71
- Zhang, X., Wang, X.Y., Song, X.G., Liu, C.M., Shi, Y.Y., Wang, Y.K., Afonja, O., Ma, C.H., Chen, Y.H.H., and Zhang, L.N. (2010). Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101, 2163-2170. https://doi.org/10.1111/j.1349-7006.2010.01664.x
- Zhao, H.E., Guo, M.J., Zhao, G.Y., Ma, Q., Ma, B.A., Qiu, X.C., and Fan, Q.Y. (2012). miR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells. Int. J. Mol. Med. 30, 1013-1020. https://doi.org/10.3892/ijmm.2012.1111
- Zhu, J.F., Feng, Y.P., Ke, Z.F., Yang, Z., Zhou, J.Y., Huang, X.R., and Wang, L.T. (2012). Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am. J. Pathol. 180, 2440-2451. https://doi.org/10.1016/j.ajpath.2012.02.023
피인용 문헌
- miR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients 2017, https://doi.org/10.1007/s00784-017-2126-y
- Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2 vol.16, pp.1, 2017, https://doi.org/10.1186/s12943-017-0715-7
- An integrated analysis of the effects of microRNA and mRNA on esophageal squamous cell carcinoma vol.12, pp.1, 2015, https://doi.org/10.3892/mmr.2015.3557
- MicroRNA dysregulation in the tumor microenvironment influences the phenotype of pancreatic cancer vol.30, pp.8, 2017, https://doi.org/10.1038/modpathol.2017.35
- In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer vol.74, pp.4, 2016, https://doi.org/10.1007/s12013-016-0754-5
- Sex and age differences in the expression of liver microRNAs during the life span of F344 rats vol.8, pp.1, 2017, https://doi.org/10.1186/s13293-017-0127-9
- miR-143 inhibits proliferation and induces apoptosis of mammary epithelial cells in dairy goat vol.20, pp.2, 2016, https://doi.org/10.1080/19768354.2016.1165288
- SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition vol.21, pp.2, 2016, https://doi.org/10.1007/s10495-015-1201-6
- Enhanced Expression of miR-425 Promotes Esophageal Squamous Cell Carcinoma Tumorigenesis by Targeting SMAD2 vol.42, pp.11, 2015, https://doi.org/10.1016/j.jgg.2015.09.010
- miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway vol.22, pp.12, 2015, https://doi.org/10.1038/cdd.2015.99
- miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4 vol.7, pp.10, 2016, https://doi.org/10.1007/s13238-016-0313-2
- The role of microRNA in esophageal squamous cell carcinoma vol.51, pp.6, 2016, https://doi.org/10.1007/s00535-016-1161-9
- Up-Regulation of microRNA-183 Promotes Cell Proliferation and Invasion in Glioma By Directly Targeting NEFL vol.36, pp.8, 2016, https://doi.org/10.1007/s10571-016-0328-5
- MiR-183 promotes growth of non-small cell lung cancer cells through FoxO1 inhibition vol.36, pp.10, 2015, https://doi.org/10.1007/s13277-015-3550-8
- MiR-328 suppresses the survival of esophageal cancer cells by targeting PLCE1 vol.470, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.01.020
- Low expression of microRNA-202 is associated with the metastasis of esophageal squamous cell carcinoma vol.11, pp.3, 2016, https://doi.org/10.3892/etm.2016.3014
- Mutations in GAS5 affect the transformation from benign prostate proliferation to aggressive prostate cancer by affecting the transcription efficiency of GAS5 pp.00219541, 2019, https://doi.org/10.1002/jcp.27561
- HDAC-Linked “Proliferative” miRNA Expression Pattern in Pancreatic Neuroendocrine Tumors vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092781
- An integrative framework to identify cell death-related microRNAs in esophageal squamous cell carcinoma vol.7, pp.35, 2016, https://doi.org/10.18632/oncotarget.10779
- Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis vol.7, pp.27, 2016, https://doi.org/10.18632/oncotarget.8715
- miR-202 Promotes Cell Apoptosis in Esophageal Squamous Cell Carcinoma by Targeting HSF2 vol.25, pp.2, 2014, https://doi.org/10.3727/096504016x14732772150541
- Upregulated miR-9-3p Promotes Cell Growth and Inhibits Apoptosis in Medullary Thyroid Carcinoma by Targeting BLCAP vol.25, pp.8, 2014, https://doi.org/10.3727/096504016x14791715355957
- Overexpression of miR-191 Predicts Poor Prognosis and Promotes Proliferation and Invasion in Esophageal Squamous Cell Carcinoma vol.58, pp.6, 2014, https://doi.org/10.3349/ymj.2017.58.6.1101
- Gene function analysis and underlying mechanism of esophagus cancer based on microarray gene expression profiling vol.8, pp.62, 2014, https://doi.org/10.18632/oncotarget.22160
- miR-183 and miR-141 in lesion tissues are potential risk factors for poor prognosis in patients with infected abdominal aortic aneurysm vol.16, pp.6, 2014, https://doi.org/10.3892/etm.2018.6733
- Identification of crucial miRNAs and genes in esophageal squamous cell carcinoma by miRNA-mRNA integrated analysis vol.98, pp.27, 2014, https://doi.org/10.1097/md.0000000000016269
- Downregulation of miR-183 inhibits the growth of PANC-1 pancreatic cancer cells in vitro and in vivo , and increases chemosensitivity to 5-fluorouracil and gemcitabine vol.17, pp.3, 2014, https://doi.org/10.3892/etm.2018.7112
- The Human Novel Gene LNC-HC Inhibits Hepatocellular Carcinoma Cell Proliferation by Sequestering hsa-miR-183-5p vol.20, pp.None, 2014, https://doi.org/10.1016/j.omtn.2020.03.008
- Phosphatase and Tensin Homolog (PTEN) of Japanese Flounder—Its Regulation by miRNA and Role in Autophagy, Apoptosis and Pathogen Infection vol.21, pp.20, 2014, https://doi.org/10.3390/ijms21207725
- Network analysis of miRNA targeting m6A-related genes in patients with esophageal cancer vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.11893
- miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma vol.22, pp.7, 2014, https://doi.org/10.3390/ijms22073640