DOI QR코드

DOI QR Code

A Study on the Applicability of Data Mining for Crime Prediction : Focusing on Burglary

범죄예측에서의 데이터마이닝 적용 가능성 연구 : 절도범죄를 중심으로

  • Bang, Seung-Hwan (Dept. of Industrial and Management Engineering, POSTECH) ;
  • Kim, Tae-Hun (Dept. of Industrial and Management Engineering, POSTECH) ;
  • Cho, Hyun-Bo (Dept. of Industrial and Management Engineering, POSTECH)
  • 방승환 (포항공과대학교 산업경영공학과) ;
  • 김태훈 (포항공과대학교 산업경영공학과) ;
  • 조현보 (포항공과대학교 산업경영공학과)
  • Received : 2014.08.24
  • Accepted : 2014.10.28
  • Published : 2014.12.31

Abstract

Recently, crime prediction and prevention are the most important social issues, and global and local governments have tried to prevent crime using various methodologies. One of the methodologies, data mining can be applied at various crime fields such as crime pattern analysis, crime prediction, etc. However, there is few researches to find the relationships between the results of data mining and crime components in terms of criminology. In this study, we introduced environmental criminology, and identified relationships between environment factors related with crime and variables using at data mining. Then, using real burglary data occurred in South Korea, we applied clustering to show relations of results of data mining and crime environment factors. As a result, there were differences in the crime environment caused by each cluster. Finally, we showed the meaning of data mining use at crime prediction and prevention area in terms of criminology.

최근, 범죄가 증가함에 따라 범죄를 예측하고 예방하는 것은 사회의 중요한 이슈이며 정부 및 지자체는 다양한 방법론을 활용하여 범죄를 사전에 막고자 노력하고 있다. 데이터마이닝은 범죄예측 및 예방에 활용되는 대표적인 방법론이며, 범죄 패턴 분석, 범죄 발생 예측 등 다양한 분야에서 연구되고 있다. 그러나 데이터마이닝의 결과가 범죄학에서의 범죄 환경요소와 어떤 관련이 있는지 혹은, 사건해결에 어떤 도움을 줄 수 있는지에 대한 연구는 이루어지고 있지 않다. 따라서 본 논문에서는, 범죄학에서 범죄의 발생과 범죄 환경요소들의 상호 관련성을 보이고 범죄 발생과 관련된 환경요소와 데이터마이닝에 활용되는 변수 간의 관계를 정의하고자 하였다. 또한, 국내 보호관찰소에서 보관되고 있는 절도범죄 데이터를 사용하여 실제로 데이터마이닝의 결과가 범죄 환경요소와 어떤 관련이 있는지를 보이기 위해 군집분석을 적용하였다. 그 결과 각 군집별로 범죄가 발생하는 환경에 차이가 있었으며, 이를 활용하여 데이터마이닝이 범죄학관점에서 범죄 예측 및 예방 활용에 유의미함을 보였다.

Keywords

References

  1. C. Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior, and Y. Tian, "IBM Smart Surveillance System(S3): A Open and Extensible Framework for Event based Surveillance," IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 318-323, Como, Italy, September 2005.
  2. S. Chainey, L. Tompson, and S. Uhlig, "The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime," Security Journal, Vol. 21, pp. 4-28, February 2008. https://doi.org/10.1057/palgrave.sj.8350066
  3. D. Brown, and R. Oxford, "Data Mining Time Series with Applications to Crime Analysis," IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 1453-1459, Tucson, USA, October 2001.
  4. S. Nath, "Advances and Innovation in Systems, Computing Science and Software Engineering," Springer, pp. 405-409, 2007.
  5. H. Chen, W. Chung, J. Xu, G. Wang, Y. Qin, and M. Chau, "Crime Data Mining: A General Framework and Some Examples," Computer, Vol. 37, No. 4, pp. 50-56, April 2004.
  6. V. Grover, R. Adderley, and M. Bramer, "Applications and Innovations in Intelligent Systems XIV," Springer London, pp. 233-237, 2007.
  7. M. Keyvanpour, M. Javideh, and M. Ebrahimi, "Detecting and Investigating Crime by Means of Data Mining: A General Crime Matching Framework," Procedia Computer Science, Vol. 3, pp. 872-880, February 2011. https://doi.org/10.1016/j.procs.2010.12.143
  8. P. Thongatae, and S. Srisuk, "An Analysis of Data Mining Application in Crime Domain," IEEE International Conference on Computer and Information Technology Workshops, pp. 122-126, Sydney, Australia, July 2008.
  9. L. Cohen, and M. Felson, "Social Change and Crime Rate Trends: A Route Activity Approach," American Sociological Review, Vol. 44, No. 4, pp. 588-608, August 1979. https://doi.org/10.2307/2094589
  10. M. Felson, and R. Clarke, "Opportunity Makes the Thief: Practical Theory for Crime Prevention," Police Research Series Paper 98, Home Office, pp. 4-8, 1998.
  11. P. Brantingham, and P. Brantingham, "Environmental Criminology," Wavelend Press Inc, pp. 27-54, 1991.
  12. A. Buczak, and C. Gifford, "Fuzzy Association Rule Mining for Community Crime Pattern Discovery," ACM SIGKDD Workshops on Intelligence and Security Informatics Article, No. 2, New York, USA, July 2010.
  13. D. Dzemydiene, and V. Rudzkiene, "Multiple Regression Analysis in Crime Pattern Warehouse for Decision Support," Proceedings of the 13th International Conference on Database and Expert Systems Applications, pp. 249-258, Aix-en-Provence, France, September 2002.
  14. V. Ng, S. Chan, D. Lau, and C. Ying, "Incremental Mining for Temporal Association Rules for Crime Pattern Discoveries," Proceedings of the Eighteenth Conference on Australasian database, Vol. 63, pp. 123-132, Darlinghurst, Australia, March 2007.
  15. B. R. Mednick, R. L. Baker, and L. E. Carothers, "Patterns of Family Instability and Crime: The Association of Timing of the Family's Disruption with Subsequent Adolescent and Young Adult Criminality", Journal of Youth and Adolescence, Vol. 19, No. 3, June 1990.
  16. H. Liu and D. E. Brown, "Criminal Incident Prediction Using a Point-pattern-based Density Model", International Journal of Forecasting, Vol. 19, No. 4, pp. 603-622, December 2003. https://doi.org/10.1016/S0169-2070(03)00094-3
  17. T. Nakaya, and K. Yano, "Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics," Transaction in GIS, Vol. 14, No. 3, pp. 223-239, June 2010. https://doi.org/10.1111/j.1467-9671.2010.01194.x
  18. B. Chandra, M. Gupta, and M. Gupta, "A Multivariate Time Series Clustering Approach for Crime Trends Prediction," IEEE International Conference on Systems, Man and Cybernetics, pp. 892-896, Singapore, October 2008.
  19. M. Carglia, R. Haining, and P. Wiles, "A Comparative Evaluation of Approaches to Urban Crime Pattern Analysis", Urban Studies, Vol. 37, No. 4, pp. 711-729, April 2000. https://doi.org/10.1080/00420980050003982
  20. R. Jamieson, L. Land, D. Winchester, G. Stephens, A. Steel, A. Maurushat, and R. Sarre, "Addressing Identity Crime in Crime Management Information Systems: Definitions, classification, and empirics," Computer Law & Security Review, Vol. 28, No. 4, pp. 381-395, August 2012. https://doi.org/10.1016/j.clsr.2012.03.013
  21. A. Nasridinov, S. Ihm, and Y. Park, "Information Technology Convergence," Springer Netherlands, Vol. 253, pp. 531-538, 2013.
  22. D. M. Gottfredson, "Prediction and Classification in Criminal Justice Decision Making", Crime and Justice, Vol. 9, pp. 1-20, 1987. https://doi.org/10.1086/449130
  23. J. E. Douglas, R. K. Ressler, and C. R. Hartman, "Criminal Profiling from Crime Scene Analysis", Behavioral Science and the Law, Vol. 4, No. 4, pp. 401-421, Autumn 1986. https://doi.org/10.1002/bsl.2370040405