Abstract
In this paper, we propose a method to decide the additional edges in order to integrate two communitites A,B($${\mid}A{\mid}{\geq_-}{\mid}B{\mid}$$, ${\mid}{\cdot}{\mid}$ is the size of the set). The proposed algorithm uses a fitness function that shows the property of a community and the fitness function is defined by the number of edges which exist in the community and connect two nodes, one is in the community and the other is out of the community. The community has a strong property when the function has a large value. The proposed algorithm is a kind of greedy method and when a node of B is merged to A, the minimum number of additional edges is decided to increase the fitness function value of A. After determining the number of additional edges, we define the community connectivity measures using the node centrality to determine the edges locations. The connections of the new edges are fixed to maximize the connectivity measure of the combined community. The procedure is applied for all nodes in B to integrate A and B. The effectiveness of the proposed algorithm is shown by solving the Zachary Karate Club network.
본 논문에서는 네트워크 내에 존재하는 두 개의 커뮤니티 A,B($${\mid}A{\mid}{\geq_-}{\mid}B{\mid}$$, ${\mid}{\cdot}{\mid}$는 커뮤니티의 노드 개수)를 통합하는데 필요한 에지 수 및 에지 위치를 결정하는 알고리즘을 제안한다. 제안된 알고리즘은 커뮤니티 내,외부로 향하는 에지들의 개수를 이용하여 커뮤니티의 성질을 나타내는 적합도 함수를 이용하고, 큰 값을 가질수록 커뮤니티로서의 성질이 크다는 것을 의미한다. 제안된 알고리즘은 그리디 방식으로, B의 하나의 노드에 대해 해당 노드를 A로 병합할 때 커뮤니티 A의 적합도 값이 증가할 수 있는 최소에지수를 결정한다. 최소에지수가 결정된 후, 새로 추가될 에지의 위치를 결정하기 위해 노드 중앙성을 이용한 커뮤니티 연결도 지표를 정의한다. 추가 에지의 위치는 통합된 커뮤니티 연결도 지표를 최대로 만들 수 있도록 결정한다. B의 모든 노드에 대해 이러한 과정을 적용하여 두 커뮤니티를 통합한다. Zachary의 가라데클럽 네트워크를 이용하여 제안된 알고리즘의 실효성을 검증하였다.