DOI QR코드

DOI QR Code

MIF (Molded-In Foaming) 공정에 적합한 고분자 기재의 유변학적 특성 연구

The Study on the Rheological Properties of Polymer Matrix for MIF (Molded-In Foaming) Process

  • 김민근 (부산대학교 화공생명공학부) ;
  • 송형용 (부산대학교 화공생명공학부) ;
  • 김동건 (한국신발피혁연구원) ;
  • 김효준 (한국신발피혁연구원) ;
  • 박건욱 (한국신발피혁연구원) ;
  • 유재근 (한국신발피혁연구원) ;
  • 현규 (부산대학교 화공생명공학부)
  • Kim, Mingeun (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Song, Hyeong Yong (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Dong Gun (Korea Institute of Footwear & Leather Technology) ;
  • Kim, Hyo Jun (Korea Institute of Footwear & Leather Technology) ;
  • Park, Geon Uk (Korea Institute of Footwear & Leather Technology) ;
  • Yu, Jae Keun (Korea Institute of Footwear & Leather Technology) ;
  • Hyun, Kyu (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 투고 : 2014.10.31
  • 심사 : 2014.12.03
  • 발행 : 2014.12.31

초록

MIF (Molded-In Foaming) 공법의 발포 거동에 적합한 고분자 기재를 선정하기 위해 SBC (K-resin KK38)와 SBS (KTR 101와 KTR 301)의 유변물성을 측정하였다. SBS의 유변물성 ($G^{\prime}$, $G^{{\prime}{\prime}}$, ${\eta}^*$)은 $155^{\circ}C$$170^{\circ}C$의 경우 시간에 따라 유변물성 값의 변화가 거의 없으나, $185^{\circ}C$$200^{\circ}C$의 경우에는 시간에 따라 증가하는 것을 볼 수 있었다. 특히, KTR 301의 유변물성 값이 시간에 따라 큰 폭으로 증가하였다. 시간에 따른 유변물성 상승의 정확한 원인을 확인하기 위해 $155^{\circ}C$$200^{\circ}C$에서 1800 s 이후의 KTR 301의 비선형 유변물성을 진폭에 대해 측정하였다. $155^{\circ}C$에서는 일반적인 수지와 같은 한 번의 박화(thinning)현상이 관찰되나 $200^{\circ}C$에서는 두 번의 박화현상이 관찰되었고 (Payne effect), 이는 고온에서 SBS가 겔화에 의한 경화가 일어난다고 볼 수 있다. 따라서 이러한 유변물성으로부터 MIF 공법에 요구되는 특성(발포 초기 낮은 점도와 발포 완료 이후 높은 점도)에 적합한 고분자 기재는 SBS KTR 301임을 확인할 수 있었다.

In order to select polymer matrix for MIF (Molded-In Foaming) process, in this study, we investigated rheological properties of commercial polymers, SBC (Styrene-Butadiene Copolymers, K-resin KK38) and SBS (Styrene- Butadiene-Styrene, KTR 101 and KTR 301). In time sweep test, the rheological properties ($G^{\prime}$, $G^{{\prime}{\prime}}$, ${\eta}^*$) of SBS at 155 and $170^{\circ}C$ display almost constant value as a function of time from 0 s to 1800 s. On contrast, the rheological properties of SBS at 185 and $200^{\circ}C$ exponentially increase as a function of time. It could be due to gelation of SBS at high temperature conditions. These increment of rheological properties are not observed in SBC. From LAOS (large amplitude oscillatory shear) test, the nonlinear rheological properties of SBS at 155 and $200^{\circ}C$ after 1800 s are compared. The nonlinear rheological properties at $155^{\circ}C$ show simple strain thinning behavior such as linear homopolymer, however, the nonlinear rheological properties at $200^{\circ}C$ show 2 times strain thinning behavior (Payne effect). It well match with the gelation of SBS at $200^{\circ}C$. From rheological studies, it is confirmed that the proper polymer matrix for MIF process (low rheological properties at initial time and high rheological properties after process) is SBS KTR 301.

키워드

참고문헌

  1. A. J. Harvey, "Footwear Materials and Process Technology", LASRA publication, 1992.
  2. K. C. Frisch, and J. H. Saunders, "Plastic Foams", Marcel Dekker Incorporated, 1973.
  3. 이호설, 고영흔, 신현철, "음이온 중합 반응의 공업적 이용 " Chem. Ind. Technol., 15, 334 (1997).
  4. E. J. Choi, J. H. Yoon, J. K. Jo, S. E. Shim, J. H. Yun, and I. Kim, "Present and Future of Thermoplastic Elastomers As Environmentally Friendly Organic Materials", Elast. Compos., 45, 170 (2010).
  5. K. Hyun, "Analysis and Application of Nonlinear Rheological Properties by Large Amplitude Oscillatory Shear (LAOS) Test", Polym. Sci. Technol., 24, 183 (2013).
  6. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, "A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)", Prog. Polym. Sci., 36, 1697 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.002
  7. K. Hyun, and M. Wilhelm, "Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems", Macromolecules, 42, 411 (2009). https://doi.org/10.1021/ma8017266
  8. R. Salehiyan, Y. Yoo, W. J. Choi, and K. Hyun, "Characterization of morphologies of compatibilized Polypropylene/Polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology", Macromolecules, 47, 4066 (2014). https://doi.org/10.1021/ma500700e
  9. H. T. Lim, K. H. Ahn, J. S. Hong, and K. Hyun, "Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow", J. Rheol., 57, 767 (2013). https://doi.org/10.1122/1.4795748
  10. A. R. Payne., "The Dynamic Properties of Carbon Black- Loaded Natural Rubber Vulcanizates. Part I", J. Appl. Polym. Sci., 6, 57 (1962). https://doi.org/10.1002/app.1962.070061906
  11. B. C. Lee, and K. S. Yoo, "A Study of Dynamic Viscoelastic Properties on Temperatures of Natural Rubber", J. Kor. Inst. Rubber Ind., 32, 29 (1997).
  12. S. M. Kim, M. K. Jang, C. Y. Choi, J. W. Nah, and K. J. Kim, "Effects of Silane Concentration on the Silica-Silica Interaction Parameter ($\alpha$F) of the Silica / Natural Rubber Compound", Elast. Compos., 47, 23 (2012). https://doi.org/10.7473/EC.2012.47.1.023

피인용 문헌

  1. Investigation of foaming cell development for epoxy resin with blowing and curing agent by rheological properties vol.25, pp.4, 2017, https://doi.org/10.1007/s13233-017-5052-6
  2. Investigation of thermoplastic elastomer (TPE) foaming process using blowing agent by rheological and morphological methods pp.00218995, 2019, https://doi.org/10.1002/app.47358