DOI QR코드

DOI QR Code

Cardiovascular Molecular Imaging with Contrast Ultrasound: Principles and Applications

  • Shim, Chi Young (Knight Cardiovascular Institute, Oregon Health & Science University) ;
  • Lindner, Jonathan R. (Knight Cardiovascular Institute, Oregon Health & Science University)
  • Published : 2014.01.30

Abstract

Methods for imaging the molecular or cellular profile of tissue are being developed for all forms of non-invasive cardiovascular imaging. It is thought that these technologies will potentially improve patient outcomes by allowing diagnosis of disease at an early-stage, monitoring disease progression, providing important information on patient risk, and for tailoring therapy to the molecular basis of disease. Molecular imaging is also already assuming an important role in science by providing a better understanding of the molecular basis of cardiovascular pathology, for assessing response to new therapies, and for rapidly optimizing new or established therapies. Ultrasound-based molecular imaging is one of these new approaches. Contrast-enhanced ultrasound molecular imaging relies on the detection of novel site-targeted microbubbles (MB) or other acoustically active particles which are administered by intravenous injection, circulate throughout the vascular compartment, and are then retained and imaged within regions of disease by ligand-directed binding. The technique is thought to be advantageous in practical terms of cost, time, and ease of use. The aim of this review is to discuss the molecular participants of cardiovascular disease that have been targeted for ultrasound imaging, general features of site-targeted MB, imaging protocols, and potential roles of ultrasound molecular imaging in cardiovascular research and clinical medicine.

Keywords

Acknowledgement

Supported by : National Institutes of Health

References

  1. Sinusas AJ, Bengel F, Nahrendorf M, et al. Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 2008;1:244-56. https://doi.org/10.1161/CIRCIMAGING.108.824359
  2. Inaba Y, Lindner JR. Molecular imaging of disease with targeted contrast ultrasound imaging. Transl Res 2012;159:140-8. https://doi.org/10.1016/j.trsl.2011.12.001
  3. Gessner R, Dayton PA. Advances in molecular imaging with ultrasound. Mol Imaging 2010;9:117-27.
  4. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 2002;15:396-403. https://doi.org/10.1067/mje.2002.117290
  5. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340:115-26. https://doi.org/10.1056/NEJM199901143400207
  6. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998;91:3527-61.
  7. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346:425-34. https://doi.org/10.1038/346425a0
  8. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res 1996;32:733-42. https://doi.org/10.1016/0008-6363(96)00066-1
  9. Ley K. The role of selectins in inflammation and disease. Trends Mol Med 2003;9:263-8. https://doi.org/10.1016/S1471-4914(03)00071-6
  10. Hamilton AJ, Huang SL, Warnick D, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004;43:453-60. https://doi.org/10.1016/j.jacc.2003.07.048
  11. Lanza GM, Wallace KD, Scott MJ, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 1996; 94:3334-40. https://doi.org/10.1161/01.CIR.94.12.3334
  12. Lanza GM, Abendschein DR, Hall CS, et al. In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with ligand-targeted nanoparticles. J Am Soc Echocardiogr 2000;13:608-14. https://doi.org/10.1067/mje.2000.105840
  13. Bassenge E. Antiplatelet effects of endothelium-derived relaxing factor and nitric oxide donors. Eur Heart J 1991;12 Suppl E:12-5. https://doi.org/10.1093/eurheartj/12.suppl_E.12
  14. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004;109(23 Suppl 1):III27-32. https://doi.org/10.1161/01.CIR.0000115644.35804.8B
  15. Alonso A, Della Martina A, Stroick M, et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 2007;38:1508-14. https://doi.org/10.1161/STROKEAHA.106.471391
  16. Wang X, Hagemeyer CE, Hohmann JD, et al. Novel single-chain antibody- targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation 2012;125:3117-26. https://doi.org/10.1161/CIRCULATIONAHA.111.030312
  17. Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003;1:1335-42. https://doi.org/10.1046/j.1538-7836.2003.00260.x
  18. Liu Y, Davidson BP, Yue Q, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging 2013;6:74-82. https://doi.org/10.1161/CIRCIMAGING.112.975193
  19. McCarty OJ, Conley RB, Shentu W, et al. Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc Imaging 2010;3:947-55. https://doi.org/10.1016/j.jcmg.2010.06.013
  20. Leong-Poi H, Christiansen J, Klibanov AL, Kaul S, Lindner JR. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003;107:455-60. https://doi.org/10.1161/01.CIR.0000044916.05919.8B
  21. Leong-Poi H, Christiansen J, Heppner P, et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 2005;111:3248-54. https://doi.org/10.1161/CIRCULATIONAHA.104.481515
  22. Dayton PA, Pearson D, Clark J, et al. Ultrasonic analysis of peptide- and antibody-targeted microbubble contrast agents for molecular imaging of alphavbeta3-expressing cells. Mol Imaging 2004;3:125-34. https://doi.org/10.1162/1535350041464883
  23. Palmowski M, Huppert J, Ladewig G, et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther 2008;7:101-9.
  24. Behm CZ, Kaufmann BA, Carr C, et al. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation 2008;117:2902-11. https://doi.org/10.1161/CIRCULATIONAHA.107.744037
  25. Ryu JC, Davidson BP, Xie A, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation 2013;127:710-9. https://doi.org/10.1161/CIRCULATIONAHA.112.116103
  26. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin- targeted nanoparticles. Circulation 2003;108:2270-4. https://doi.org/10.1161/01.CIR.0000093185.16083.95
  27. Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004;3:527-32. https://doi.org/10.1038/nrd1417
  28. Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Ley K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complementmediated adherence to activated leukocytes. Circulation 2000;101: 668-75. https://doi.org/10.1161/01.CIR.101.6.668
  29. Lindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 2000;102:531-8. https://doi.org/10.1161/01.CIR.102.5.531
  30. Lindner JR, Song J, Xu F, et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 2000;102:2745-50. https://doi.org/10.1161/01.CIR.102.22.2745
  31. Behm CZ, Lindner JR. Cellular and molecular imaging with targeted contrast ultrasound. Ultrasound Q 2006;22:67-72.
  32. Quillard T, Libby P. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. Circ Res 2012;111:231-44. https://doi.org/10.1161/CIRCRESAHA.112.268144
  33. Kaufmann BA, Carr CL, Belcik JT, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 2010;30:54-9. https://doi.org/10.1161/ATVBAHA.109.196386
  34. Villanueva FS, Jankowski RJ, Klibanov S, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 1998;98:1-5. https://doi.org/10.1161/01.CIR.98.1.1
  35. Kaufmann BA, Sanders JM, Davis C, et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007;116:276-84. https://doi.org/10.1161/CIRCULATIONAHA.106.684738
  36. Chadderdon SM, Belcik JT, Bader L, et al. Pro-Inflammatory Endothelial Activation Detected by Molecular Imaging in Obese Non-Human Primates Coincides with the Onset of Insulin Resistance and Progressively Increases with Duration of Insulin Resistance. Circulation 2013. [Epub ahead of print]
  37. Anderson DR, Tsutsui JM, Xie F, Radio SJ, Porter TR. The role of complement in the adherence of microbubbles to dysfunctional arterial endothelium and atherosclerotic plaque. Cardiovasc Res 2007;73:597-606. https://doi.org/10.1016/j.cardiores.2006.11.029
  38. Xie F, Lof J, Matsunaga T, Zutshi R, Porter TR. Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions. Circulation 2009;119:1378-85. https://doi.org/10.1161/CIRCULATIONAHA.108.825067
  39. Davidson BP, Lindner JR. Future applications of contrast echocardiography. Heart 2012;98:246-53. https://doi.org/10.1136/heartjnl-2011-300737
  40. Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003;29:1759-67. https://doi.org/10.1016/S0301-5629(03)00976-1
  41. Davidson BP, Kaufmann BA, Belcik JT, Xie A, Qi Y, Lindner JR. Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol 2012;60:1690-7. https://doi.org/10.1016/j.jacc.2012.07.027
  42. Villanueva FS, Lu E, Bowry S, et al. Myocardial ischemic memory imaging with molecular echocardiography. Circulation 2007;115:345-52. https://doi.org/10.1161/CIRCULATIONAHA.106.633917
  43. Leong-Poi H. Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res 2009;84: 190-200. https://doi.org/10.1093/cvr/cvp248
  44. Sang QX. Complex role of matrix metalloproteinases in angiogenesis. Cell Res 1998;8:171-7. https://doi.org/10.1038/cr.1998.17
  45. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569-71. https://doi.org/10.1126/science.7512751
  46. Pysz MA, Guracar I, Tian L, Willmann JK. Fast microbubble dwell-time based ultrasonic molecular imaging approach for quantification and monitoring of angiogenesis in cancer. Quant Imaging Med Surg 2012; 2:68-80.

Cited by

  1. Age-related vascular stiffening: causes and consequences vol.6, pp.None, 2014, https://doi.org/10.3389/fgene.2015.00112
  2. Imaging of Small Animal Peripheral Artery Disease Models: Recent Advancements and Translational Potential vol.16, pp.12, 2014, https://doi.org/10.3390/ijms160511131
  3. Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/6381464
  4. Biomimetic PLGA Microbubbles Coated with Platelet Membranes for Early Detection of Myocardial Ischaemia-Reperfusion Injury vol.18, pp.8, 2014, https://doi.org/10.1021/acs.molpharmaceut.1c00145