DOI QR코드

DOI QR Code

Influence of Precursor on the Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2 Cathode for the Lithium Secondary Battery

전구체의 물성에 따른 리튬 2차전지용 Li(Ni0.5Co0.2Mn0.3)O2의 전기화학적 특성 변화

  • Kang, Donghyun (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Arailym, Nurpeissova (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Chae, Jeong Eun (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Kim, Sung-Soo (Graduate School of Green Energy Technology, Chungnam National University)
  • 강동현 (충남대학교 녹색에너지기술전문대학원) ;
  • ;
  • 채정은 (충남대학교 녹색에너지기술전문대학원) ;
  • 김성수 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.10.11
  • Accepted : 2013.10.24
  • Published : 2013.11.30

Abstract

The one of the cathode material, $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$, was synthesized by the precursor, $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$, from the co-precipitation method and the morphologies of the primary particle of precursors were flake and needle-shape by controlling the precipitation parameters. Identical powder properties, such as particle size, tap density, chemical composition, were obtained by same process of lithiation and heat-treatment. The relation between electrochemical performances of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ and the primary particle morphology of precursors was analyzed by SEM, XRD and EELS. In the $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ cathode from the needle-shape precursor, the primary particle size was smaller than that from flake-shape precursor and high Li concentration at grain edge comparing grain center. The cycle and rate performances of the cathode from needle-shape precursor shows superior to those from flake-shape precursor, which might be attributed to low charge-transfer resistance by impedance measurement.

리튬2차전지용 양극소재인 $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$를 공침법을 이용해 $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$ 전구체로부터 합성하였고, 공침조건을 조절하여 전구체의 1차 입자 형상을 Flake형상과 Needle형상으로 제어하였다. 동일한 공정으로 리튬과 혼합하고 열처리하여, 입도, 탭밀도, 화학적 성분 등이 동일한 분체물성의 양극 소재를 합성하였다. 전구체의 1차입자 형상에 따른 $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$의 전기화학적 특성을 평가하고, 이 특성의 변화를 SEM, XRD, EELS로 이용하여 분석하여 연관성을 고찰하였다. Needle형상 전구체로 합성한 $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ 양극의 1차입자는 Flake형상 전구체로 합성한 경우보다 작고, EELS결과로는 입자표면의 Li농도가 내부보다 상대적으로 높았다. 전기화학적인 수명과 출력특성에서 Needle형상 전구체로 합성한 양극이 Flake형상 전구체의 경우보다 우수한 특성을 보였는데, 임피던스 측정으로부터 낮은 전하이동저항에 연관되어 있을 것으로 생각된다.

Keywords

References

  1. D.-C. Li, T. Muta, L.-Q. Zhang, M. Yoshio, and H. Noguchi, "Effect of synthesis condition on the structural and electrochemical properties of $Li[Ni_{1/3}Mn_{1/3}Co_{1/3}]O_2$ prepared by carbonate co-precipitation method", J. Power Sources, 132, 150 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.016
  2. A. V. Bommel and J. R. Dahn, "Analysis of the Growth Mechanism of Coprecipitated Spherical and Dense Nickel, Manganese, and Cobalt-Containing Hydroxides in the Presence of Aqueous Ammonia", Chem. Mater., 21, 1500 (2009). https://doi.org/10.1021/cm803144d
  3. K. Wu, F. Wang, L. Gao, M.-R. Li, L. Xiao, L. Zhao, S. Hu, X. Wang, Z. Xu, and Q. Wu, "Effect of precursor and synthesis temperature on the structural and electrochemical properties of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$", Journal of Power Sources, Volumes 119121, Electrochimica Acta., 75, 393 (2012). https://doi.org/10.1016/j.electacta.2012.05.035
  4. D. C. Li, Y. K. Sasaki, M. Kageyama. K. Kobayashi, and Y. Sato, "Structure, morphology and electrochemical properties of $LiNi_{0.5}Mn_{0.5X}Co_{X}O_2$ prepared by solid state reaction", J. Power Sources, 148 85 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.006
  5. J.-Z. Kong, H.-F. Zai, C. Ren, G.-A. Tai, X.-Y. Yang, F. Zhou, H. Li, J.-X. Li, and Z. Tang, "High-capacity $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$ lithium-ion battery cathode synthesized using a green chelating agent", J. Solid State Electrochem., published online:22 September (2013).
  6. T. Ohzuku, A. Ueda, and M. Nagayama, "Electrochemistry and Structural Chemistry of $LiNi0_2$ (R3m) for 4 Volt Secondary Lithium Cells", J. Electrochem. Soc., 140, 7 (1993). https://doi.org/10.1149/1.2056121
  7. F. Cosandey, "Analysis of Li-Ion Battery Materials by Electron Energy Loss Spectroscopy", Microscopy: Science, Technology, Applications and Education", A. Mndez-Vilas, J. Daz (Eds.), Formatex, 1662 (2010).
  8. J. K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y. Zavalija, and M. S. Whittingham, "The synthesis, characterization and electrochemical behavior of the layered $LiNi_{0.4}Mn_{0.4}Co_{0.2}O_2$ compound", J. Mater. Chem., 14, 214 (2004). https://doi.org/10.1039/b309834f
  9. G.-W. Yoo, H.-J. Jeon, and J.-T. Son, "Effects of Calcinations Temperature on the Electrochemical Properties of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ Lithium-ion Cathode Materials", This jouranl., 16, 59 (2013).
  10. T. Ohzuku and Y. Makimura, "Layered Lithium Insertion Material of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ for Lithium-Ion Batteries", Chem., Lett., 30, 642 (2001). https://doi.org/10.1246/cl.2001.642
  11. T. Ohzuku and Y. Makimura, "Layered Lithium Insertion Material of $LiNi_{1/2}Mn_{1/2}O_2$: A Possible Alternative to $LiCoO_2$ for Advanced Lithium-Ion Batteries", Chem., Lett., 30, 744 (2001). https://doi.org/10.1246/cl.2001.744
  12. S.-W. Cho, J.-H. Ju, S.-H. Ryu, and K.-S. Ryu, "Structure and Electrochemical Characterization of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ as the Cathode Material Synthesized by Simple-combustion Method", This jouranl., 13, 264 (2010).
  13. S. Patoux and M. M. Doeff, "Direct synthesis of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ from nitrate precursors", Electrochem. Comm., 6, 767 (2004). https://doi.org/10.1016/j.elecom.2004.05.024
  14. H.-K. Park, "The Research and Development Trend of Cathode Materials in Lithium Ion Battery", This jouranl., 11, 197 (2008).
  15. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, "Crystal and electronic structures of superstructural $Li_{1−x}[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ $(0{\leq} x{\leq} 1)$", J. Powder Sources., 119, 644 (2003).
  16. J. H. Jang and S. M. Oh, "Complex Capacitance Analysis of Impedance Data and its Applications", This jouranl., 13, 223 (2010).
  17. H.-J. Jeon, C.-S. Kang, G. W. Yoo, C. Kim, and J.-T. Son, "The influence of lithium content in $xLi[Li_{1/3}Mn_{2/3}]O_2(1-x)$ $Li[Ni_aCo_bMn_{(1-a+b)}]O_2$ cathode materials prepared by coprecipitation method", J. Electroceram., 30, 172 (2013). https://doi.org/10.1007/s10832-013-9780-5

Cited by

  1. The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.149
  2. Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres vol.23, pp.2, 2016, https://doi.org/10.4150/KPMI.2016.23.2.136
  3. The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x = 0, 0.01) by Barium Doping vol.17, pp.4, 2014, https://doi.org/10.5229/JKES.2014.17.4.222
  4. Effects of Precursor Co-Precipitation Temperature on the Properties of LiNi1/3Co1/3Mn1/3O2 Powders vol.23, pp.4, 2016, https://doi.org/10.4150/KPMI.2016.23.4.287
  5. Stabilization of Nickel-Rich Layered Cathode Materials of High Energy Density by Ca Doping vol.28, pp.5, 2018, https://doi.org/10.3740/MRSK.2018.28.5.273