DOI QR코드

DOI QR Code

Flexible Disjoint Multipath Routing Protocol Using Local Decision in Wireless Sensor Networks

무선 센서 네트워크에서 지역 결정을 통한 유연한 분리형 다중경로 라우팅 프로토콜

  • 정관수 (충남대학교 컴퓨터공학과 컴퓨터네트워크 연구실) ;
  • 염희균 (대전대학교 컴퓨터공학과) ;
  • 박호성 (충남대학교 컴퓨터공학과 컴퓨터네트워크 연구실) ;
  • 이정철 (충남대학교 컴퓨터공학과 컴퓨터네트워크 연구실) ;
  • 김상하 (충남대학교 컴퓨터공학과 컴퓨터네트워크 연구실)
  • Received : 2013.07.25
  • Accepted : 2013.10.28
  • Published : 2013.11.30

Abstract

Multipath routing is one of challenging issues for improving the reliability of end-to-end data delivery in wireless sensor networks. Recently, a disjointedness and management of path have been studying to enhance the robustness and efficiency of the multipath routing. However, previous multipath routing protocols exploit the disjointed multipath construction method that is not to consider the wireless communication environment. In addition, if a path failures is occurred due to the node or link failures in the irregular network environment, they maintain the multipath through the simple method that to construct a new extra path. Even some of them have no a method. In order to cope with the insufficiency of path management, a hole detouring scheme, to bypass the failures area and construct the new paths, was proposed. However, it also has the problem that requires a heavy cost and a delivery suspension to the some or all paths in the hole detouring process due to the centralized and inflexible path management. Due to these limitations and problems, the previous protocols may lead to the degradation of data delivery reliability and the long delay of emergency data delivery. Thus, we propose a flexible disjoint multipath routing protocol which constructs the radio disjoint multipath by considering irregular and constrained wireless sensor networks. It also exploits a localized management based on the path priority in order to efficiently maintain the flexible disjoint multipath. We perform the simulation to evaluate the performance of the proposed method.

무선 센서 네트워크에서 다중경로 라우팅 방안은 종단 간 데이터 전달의 신뢰성을 향상시키기 위한 연구주제 중 하나이다. 최근에는 다중경로의 강건함과 효율성을 위해서 경로의 분리와 관리를 위한 연구가 다수 진행 되었다. 그러나 이전의 연구들은 무선 통신 환경을 고려하지 않은 다중경로의 분리 방법을 이용하고 있다. 게다가, 그들은 불규칙 네트워크 환경에서 노드나 통신 실패로 인해 발생하는 경로 실패를 관리하는 방법이 없거나 추가경로를 생성하는 간단한 방법을 통해 다중경로를 유지한다. 이를 보완하기 위해서, 네트워크 오류지역을 우회 전송하고 경로를 재구성하는 다중경로 유지 방안이 제안되었지만, 중앙 집중적이고 정적인 경로 관리 방법을 이용하기 때문에, 경로 재구성 과정에서 데이터 전달의 중단이나 링크의 단절, 그리고 많은 경로 재구성 비용 등이 요구되는 문제가 있다. 이런 제약과 문제들은 데이터 전달의 신뢰성 저하와 긴급 데이터의 보고 실패로 이뤄질 수 있다. 따라서 본 논문에서는 불규칙적이고 제한적인 무선 센서 네트워크 환경을 고려하여 유연한 분리형 다중경로를 구축하는 방법과 효율적으로 다중경로를 유지할 수 있도록 경로의 우선순위 규칙을 적용한 지역 결정 기반의 다중경로 관리 방법을 제안한다. 그리고 제안 방법의 성능을 평가하기 위해서 시뮬레이션을 수행한다.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," Comput. Networks, vol. 38, no. 4, pp. 393-422, Mar. 2002. https://doi.org/10.1016/S1389-1286(01)00302-4
  2. K. Romer and F. Mattern. "The design space of wireless sensor networks," IEEE Wireless Commun., vol. 11, no. 6, pp. 54-61, Dec. 2004. https://doi.org/10.1109/MWC.2004.1368897
  3. O. Younis, M. Krunz, and S. Ramasubramanian, "Node clustering in wireless sensor networks: recent developments and deployment challenges," IEEE Network, vol. 20, no. 3, pp. 20-25, Dec. 2006. https://doi.org/10.1109/MNET.2006.1637928
  4. A. Boukerche, R. B. Araujo, and L. Villas, "Optimal route selection for highly dynamic wireless sensor and actor networks environment," in Proc. 10th ACM Symp. Modeling, Analysis, Simulation Wireless Mobile Syst. (MSWiM '07), pp. 21-27, Chania, Greece, Oct. 2007.
  5. D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, "Highly-resilient, energy-efficient multipath routing in wireless sensor networks." ACM SIGMOBILE Mobile Comput. Commun. Review, vol. 5, no. 4, pp. 11-25, Oct. 2001.
  6. Q. Fang, J. Jao, and L. J. Guibas, "Locating and bypassing routing holes in sensor networks," in Proc. IEEE INFOCOM 2004, vol. 4, pp. 2458-2468, Anchorage, U.S.A., Mar. 2004.
  7. S. Dulman, T. Nieberg, J. Wu, and P. Havinga, "Trade-off between traffic overhead and reliability in multipath routing for wireless sensor networks," in Proc. IEEE Wireless Commun. Networking Conf. (WCNC 2003), vol. 3, pp. 1918-1922, New Orleans, U.S.A., Mar. 2003.
  8. E. P. C. Jones, M. Karsten, and P. A. S. Ward, "Multipath load balancing in multi-hop routing in wireless sensor networks," in Proc. IEEE Wireless Mobile Comput. Networking, Commun. (WiMob 2005), pp. 158-166, Montreal, Canada, Aug. 2005.
  9. S. Waharte and R. Boutaba, "Totally disjoint multipath routing in multihop wireless networks," in Proc. IEEE Int. Conf. Commun. (ICC '06), pp. 5576-5581, Istanbul, Turkey, June 2006.
  10. M. Radi, B. Dezfouli, K. A. Baker, and M. Lee, "Multipath routing in wireless sensor networks: survey and research challenges," Sensors, vol. 12, no. 1, pp. 650-685, Jan. 2012. https://doi.org/10.3390/s120100650
  11. M. Maimour, "Maximally radio-disjoint multipath routing for wireless multimedia sensor networks." in Proc. ACM Workshop Multimedia Networking Performance Modeling (WMuNeP '08), pp. 26-31, Vancouber, Canada, Oct. 2008.
  12. H. W. Oh, J. H. Jang, K. D. Moon, S. Park, E. Lee, and S.-H. Kim, "An explicit disjoint multipath algorithm for cost efficiency in wireless sensor networks," in Proc. IEEE Personal Indoor Mobile Radio Commun. (PIMRC), pp. 1899-1904, Istanbul, Turkey, Sep. 2010.
  13. J. Lee, H. Park, S. Oh, Y. Yim, and S.-H. Kim, "A radio-disjoint geographic multipath routing in wireless sensor networks," in Proc. IEEE Advanced Inform. Networking Applicat. (AINA), pp. 803-809, Fukuoka, Japan, Mar. 2012.
  14. S. Kim, H. Park, J. Lee, S. Oh, and S.-H. Kim, "A robust disjoint multipath scheme based on geographic routing in irregular wireless sensor networks," J. Korea Inst. Commun. Inform. Sci. (KICS), vol. 37, no. 1B, pp. 21-30, Jan. 2012. https://doi.org/10.7840/KICS.2012.37B.1.21
  15. N. Bulusu, J. Heidemann, and D. Estrin, "Gps-less low cost outdoor localization for very small devices," IEEE Personal Commun., vol. 7, no. 5, pp. 28-34, Oct. 2000.
  16. F. Yu, E. Lee, T. Kim, J. Lee, and S.-H. Kim, "Circle path based sink location service for geographic routing scheme," in Proc. IEEE Wireless Commun. Networking Conf. (WCNC), pp. 1-6, Budapest, Hungary, Apr. 2009.
  17. Scalable Network Technologies, Qualnet, Retrieved May, 30, 2013, from http://www.scalable-networks.com.
  18. W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for wireless sensor networks," in Proc. IEEE INFOCOM, vol. 3, pp. 1567-1576, New York, U.S.A., June 2002.
  19. V. Shnayder, M. Hempstead, M.-R. Chen, G. W. Allen, and M. Welsh, "Simulating the power consumption of large-scale sensor network applications," in Proc. ACM Embedded Networked Sensor Syst. (SenSys), pp. 188-200, Baltimore, U.S.A., Nov. 2004.
  20. IEEE, Wireless LAN Medium Access Protocol (MAC) and Physical Layer (PHY) Specification, IEEE Std 802.11-2012, 2012.