DOI QR코드

DOI QR Code

Low Delay IntMDCT Using Power Complementary Window

파워 상호보완 윈도우를 이용한 지연 감소 IntMDCT

  • 이상환 (충북대학교 전파통신공학과) ;
  • 이인성 (충북대학교 전파통신공학과)
  • Received : 2013.07.29
  • Accepted : 2013.09.11
  • Published : 2013.11.30

Abstract

In this paper, we propose to apply low delay algorithm using power complementary window to Integer Modified Discrete Cosine Transform (IntMDCT). Conventional transform, the Modified Discrete Cosine Transform (MDCT) usually produces floating point values for integer input values. This causes the expansion of the data. To refine on this, IntMDCT that produces integer values even for integer input values have emerged. However, IntMDCT has a problem of the algorithm delay, such as MDCT. Delay has became a key issue in environments for the purpose of real-time communications. In order to reduce the delay, the proposed algorithm was applied and the results of the performance evaluation show that delay of IntMDCT has reduced by halfexisting delay.

본 논문은 파워 상호보완 윈도우를 이용한 지연 감소 알고리즘을 IntMDCT(Integer Modified Discreate Cosine Transform)에 적용하고자 제안한다. 기존에 사용하는 변환 방식인 MDCT는 정수 입력에 대해 실수 값을 출력하므로 데이터의 확장을 야기 시킨다. 이에 정수 대 정수 변환인 IntMDCT 기술이 등장했다. 하지만 IntMDCT는 MDCT(Modified Discreate Cosine Transform)처럼 알고리즘 지연을 갖는 문제점을 가지고 있다. 지연은 실시간 통신을 목표로 하는 환경에 있어 중요한 이슈로 자리 잡고 있다. 이러한 샘플의 지연을 최소화하기 위해 제안하는 알고리즘을 적용하고 성능을 평가한 결과, IntMDCT에서 발생하는 샘플 지연이 절반으로 감소하는 것을 확인 할 수 있었다.

Keywords

References

  1. R. Geiger, T. Sporer, J. Koller, K. Brandenburg, "MPEG- 4 Scalable to Lossless Audio Coding," 117th AES Convention, paper no. 6183 (2004).
  2. ISO/IEC JTC1/SC29/WG11, "Information technology : coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s - part3: audio," IS, paper no.11172 (1992).
  3. ISO/IEC JTC1/SC29/WG11, "Coding of audiovisual objects, part 3. audio, subpart 4 time/frequency coding," IS, paper no.14496 (1999).
  4. T. Painter and A. Spanias, "Perceptual coding of digital audio", P. IEEE, 88, 451-513 (2000). https://doi.org/10.1109/5.842996
  5. J. Koller, T. Sporer, K. Brandenburg, "Robust Coding of High Quality Audio Signals," 103rd AES Convention, paper no. 4621 (1997).
  6. J. Koller, T. Sporer, K. Brandenburg, "Improving Lossless Audio Coding," AES 17th International Conference, paper no. 17 (1999).
  7. M. Purat, T. Liebchen, P. Noll, "Lossless Transform Coding of Audio Signals," 102nd, AES Convention, paper no. 4414 (1997).
  8. R. Geiger, T. Sporer, J. Koller, K. Brandenburg, "Audio coding based on Integer Transforms," 111th AES Convention, paper no. 5471 (2001).
  9. J.-M. Valin, T. B. Terriberry, C, Montgomery, G. Maxwell, "A high-quality speech and audio codec with less than 10ms delay," IEEE Trans, Audio Speech Lang Processing, 18, 58-67 (2010). https://doi.org/10.1109/TASL.2009.2023186
  10. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic Press, San Diego, 1990), pp.7-25.
  11. J. P. Princen, A.B Bradley, "Analysis/Synthesis filter Bank Design Based on Time Domain Aliasing Cancellation," IEEE Trans. On ASSP, 34, 1153-1161 (1986). https://doi.org/10.1109/TASSP.1986.1164954
  12. I. Daubechies, W. Sweldens, "Factoring wavelet transforms into lifting steps," J Fourier Anal Appl. 4, 247-269, (1998). https://doi.org/10.1007/BF02476026
  13. P. P. Vaidyanathan, Multirate Systems and Filter Banks (DK, New Jersey, 1993), pp.290-295.
  14. Vorbis I specification, http://www.xiph.org/vorbis/doc/Vorbis_I_spec.html (2004).