DOI QR코드

DOI QR Code

Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas

수문인자추출에서의 SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 적용성 평가: 대동강 및 금강 지역 사례연구

  • Her, Younggu (Department of Agricultural and Biological Engineering, Purdue University) ;
  • Yoo, Seung-Hwan (Department of Agricultural and Biological Engineering, Purdue University)
  • Received : 2013.07.30
  • Accepted : 2013.10.22
  • Published : 2013.11.30

Abstract

Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.

Keywords

References

  1. Aerts, J. C. J., M. F. Goodchild, and G. B. M. Heuvelink, 2003. Accounting for spatial uncertainty in optimization with spatial decision support systems. Transactions in GIS 7(2): 211-230. https://doi.org/10.1111/1467-9671.00141
  2. Albani, M., B. Klinkenberg, D. W. Andison, and J. P. Kimmins, 2004. The choice of window size in approximating topographic surfaces from Digital Elevation Models. International Journal of Geographic Information Science 18(6): 577-593. https://doi.org/10.1080/13658810410001701987
  3. Beven, K. J., and M. J. Kirkby, 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Science Bulletin 24: 43-69. https://doi.org/10.1080/02626667909491834
  4. Bolstad, P. V., and T. Stowe, 1994. An evaluation of DEM accuracy: elevation, slope, and aspect. Photogrammetric Engineering & Remote Sensing 60(11): 1327-1332.
  5. Carlisle, B. H., 2005. Modelling the spatial distribution of DEM error. Transactions in GIS 9(4): 521-540. https://doi.org/10.1111/j.1467-9671.2005.00233.x
  6. Consortium for Spatial Information (CGIAR CSI), 2013. SRTM 90m Digital Elevation Database. Available at: http://www.cgiar-csi.org/data. Accessed 4 Feb. 2013.
  7. Delbari, M., P. Afrasiab, and W. Loiskandl, 2009. Using sequential Gaussian simulation to assess the field-scale spatial uncertainty of soil water content. Catena 79: 163-169. https://doi.org/10.1016/j.catena.2009.08.001
  8. Deutsch, C., and A. Journel, 1998. GSLIB: Geostatistical Software Library, 2nd Ed. Oxford, U.K.: Oxford University Press.
  9. Endreny T. A., and E. F. Wood, 2001. Representing elevation uncertainty in runoff modelling and flowpath mapping. Hydrological Processes 15: 2223-2236. https://doi.org/10.1002/hyp.266
  10. ESRI, 2012. ArcGIS Help 10.1, How Fill works, Available at: http://resources.arcgis.com/en/help/main/10.1/index. html#/How_Fill_works/009z00000061000000/. Accessed in Sep. 2013.
  11. Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodrigues, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf, 2007. The shuttle radar topography mission. Reviews of Geophysics 45, RG2004.
  12. Fisher, P. F., and N. J. Tate, 2006. Causes and consequences of error in digital elevation models. Progress in Physical Geography 30(4): 467-489. https://doi.org/10.1191/0309133306pp492ra
  13. Fisher, P., 1998. Improved modeling of elevation error with geostatistics. GeoInformatica 2-3: 2115-233.
  14. Fisher, P. F. 1991. First experiment in viewshed uncertainty: The accuracy of the viewshed area. Photogrammetric Engineering & Remote Sensing 57(10): 1321-1327.
  15. Goodchild, M. F., 1980. Algorithm 9: Simulation of autocorrelation for aggregate data. Environment and Planning A 12(9): 1073-1081. https://doi.org/10.1068/a121073
  16. Goovaerts, P., 1997. Geostatistics for natural resources evaluation. NewYork, N.Y.: Oxford University Press.
  17. Gorokhovich, Y., and A. Voustianiouk, 2006. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment 104: 409-415. https://doi.org/10.1016/j.rse.2006.05.012
  18. Grohman, G., G. Kroenung, and J. Strebeck, 2006. Filling SRTM voids: the delta surface fill method. Photogrammetric Engineering and Remote Sensing 72(3): 213-216.
  19. Hall, O., G. Falorni, and R. L. Bras, 2005. Characterization and quantification of data voids in the shuttle radar topography mission data. Geoscience and Remote Sensing Letters, IEEE 2(2): 177-181. https://doi.org/10.1109/LGRS.2004.842447
  20. Hoffmann, J., and D. Walter, 2006. How complementary are SRTM-X and –C band digital elevation models? Photogrammetric Engineering & Remote Sensing 72(3): 261-268. https://doi.org/10.14358/PERS.72.3.261
  21. Holmes, K. W., O. A. Chadwick, and P. C. Kyriakidis, 2000. Error in a USGS 30-meter digital elevation model and its impact on terrain modeling. Journal of Hydrology 233: 154-173. https://doi.org/10.1016/S0022-1694(00)00229-8
  22. Hunter, G. J., M. Caetano, and M. F. Goodchild, 1995. A methodology for reporting uncertainty in spatial database products. Journal of Urban and Regional Information Systems Association 7(11): 11-21.
  23. Hunter, G. J., and M. F. Goodchild, 1997. Modeling the uncertainty of slope and aspect estimates derived from spatial databases. Geographical Analysis 29(1): 35-49.
  24. Jensen, S. K., and J. O. Domingue, 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing 54(11): 1593-1600.
  25. Kyriakidis, P. C., A. M. Shortridge, and M. F. Goodchild, 1999. Geostatistics for conflation and accuracy assessment of digital elevation models. International Journal of Geographical Information Science 13(7): 677-707. https://doi.org/10.1080/136588199241067
  26. Legendre, 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74(6): 1659-1673. https://doi.org/10.2307/1939924
  27. Lindsay, J. B., 2006. Sensitivity of channel mapping techniques to uncertainty in digital elevation data. International Journal of Geographic Information Science 20(6): 669-692. https://doi.org/10.1080/13658810600661433
  28. Loague, K., D. L. Corwin, and T. R. Ellsworth, 1998. The challenge of predicting nonpoint source pollution. Environmental Science & Technology News & Research Notes Mar. 1, 1998: 130-133.
  29. Ludwig, R., and P. Schneider, 2006. Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling. ISPRS Journal of Photogrammetry and Remote Sensing 60(5): 339-358. https://doi.org/10.1016/j.isprsjprs.2006.05.003
  30. Markham, B., J. Storey, D. Williams, and J. Irons, 2004. Landsat sensor performance: history and current status. IEEE Transactions on Geoscience and Remote Sensing 42(12): 2691–2694. https://doi.org/10.1109/TGRS.2004.840720
  31. Oksanen, J., 2006. Digital elevation model error in terrain analysis. PhD diss. Helsinki, Finland: University of Helsinki, Department of Geography.
  32. Rabus, B., M. Eineder, A. Roth, and R. Barmler, 2003. The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing 57, 241-262. https://doi.org/10.1016/S0924-2716(02)00124-7
  33. Rodriguez, E., C. S. Morris, J. E. Belz, E. C. Chapin, J. M. Martin, W. Daffer, and S. Hensley, 2005. An assessment of the SRTM topographic products. Jet Propulsion Laboratory D-31639. JPL NASA.
  34. Rodriguez, E., Charles S. Morris, and Erci Belz, 2006. A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing 72(3): 249-260. https://doi.org/10.14358/PERS.72.3.249
  35. Tachikawa, T., M. Kaku, A. Iwasaki, D. Gesch, M. Oimoen, Z. Zhang, J. Danielson, T. Krieger, B. Curtis, J. Haase, M. Abrams, R. Crippen, and C. Carabajal, 2011. ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results. Jet Propulson Laboratory.
  36. Taramelli, A., P. Reichenbach, and F. Ardizzone, 2008. Comparison of SRTM elevation data with cartographically derived DEMs in Italy. Revista Geografica Academica 2(8): 41-52.
  37. United States Geological Survey (USGS), 2009. Vertical accuracy of the national elevation dataset. United States Geological Survey. Available at: http://ned.usgs.gov/ downloads/documents/NED. Assessed on 15 Dec 2009.
  38. USGS, 2013. Landsat Search and Download. Available at: http://landsat.usgs.gov/Landsat_Search_and_Download. php. Accessed in Sep 2013.
  39. van Zyl, J. J., 2001. The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica 48(5): 559-565. https://doi.org/10.1016/S0094-5765(01)00020-0
  40. Wechsler, S. P., and C. N. Kroll, 2006. Quantifying DEM uncertainty and its effect on topographic parameters. Photogrammetric Engineering & Remote Sensing 72(9): 1081-1090. https://doi.org/10.14358/PERS.72.9.1081
  41. Wechsler, S. P., 2007. Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrology Earth System Sciences 11: 1481-1500. https://doi.org/10.5194/hess-11-1481-2007
  42. Yoo, S. H., W. H. Nam, and J. Y. Choi, 2007. Assessment of accuracy of SRTM (Shuttle Radar Topography Mission). Korea National Committee on Irrigation and Drainage (KCID) Journal 14(1): 80-88 (in Korean).