DOI QR코드

DOI QR Code

Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose

Bacterial cellulose를 기반으로 하는 투명전도성막의 제조 및 특성평가

  • Yim, Eun-Chae (Interdisciplinary program of graduate school for bioenergy and biomaterials, Chonnam National University) ;
  • Kim, Seong-Jun (Department of Environmental Engineering, Chonnam National University) ;
  • Kee, Chang-Doo (School of Mechanical Systems Engineering, Chonnam National University)
  • 임은채 (전남대학교 바이오에너지 및 바이오소재 협동과정) ;
  • 김성준 (전남대학교 환경공학과) ;
  • 기창두 (전남대학교 기계공학과)
  • Received : 2013.08.23
  • Accepted : 2013.10.29
  • Published : 2013.12.01

Abstract

A transparent film was fabricated based on bacterial cellulose (BC), BC has excellent physical strength and stability at high temperature and it is an environmental friendly flexible material. In order to improve the conductivity, silver nanowire (AgNW) and/or graphene were introduced to the BC membrane. The aspect ratio of the AgNW synthesized in this study was 214, with a length of $15{\mu}m$ and width of 70 nm. The higher aspect ratio improved the conductivity by reducing the contact resistance. The thermal and electrical properties of 7 types of films prepared were investigated. Each film was fabricated with rectangular shape ($2mm{\times}2mm{\times}50{\mu}m$). The films were scored with a net shape by a knife, and filled with AgNW and graphene to bestow conductivity. The film filled with AgNW showed favorable electrical characteristics with a thickness of $350{\mu}m$, electron concentration of $1.53{\times}10^{19}$, electron mobility of $6.63{\times}10^5$, and resistivity of 0.28. The film filled with graphene had a thickness of $360{\mu}m$, electron concentration of $7.74{\times}10^{17}$, electron mobility of 0.17, and resistivity of 4.78. The transmittances at 550 nm were 98.1% and 80.9%, respectively. All the films were able to light LEDs bulbs although their brightness differed. A thermal stability test of the BC and PET films at $150{\pm}5^{\circ}C$ showed that the BC film was more stable, whereas the PET film was quickly banded. From these results, it was confirmed that there it is possible to fabricate new transparent conductivity films based on BC.

본 연구에서는 물리적 강도가 뛰어나고 고온에서 안정하며 유연한 친환경 소재인 박테리아 셀룰로오스를 기반으로 투명 전도성막을 제조하였다. 전기전도성의 확보를 위해 은나노와이어(AgNW)와 그래핀을 도입하였다. 합성한 AgNW는 평균적으로 길이 약 $15{\mu}m$, 폭 약 70 nm로 종횡비 214이었다. 종횡비가 클수록 접촉저항을 낮추어 전도성을 개선시키게 된다. 총 7가지의 막을 제조하고 열적 및 전기적 물성을 조사하였다. 또 전도성막으로 제조하기 위해서 BC막을 칼로 길이 2 mm, 깊이 $50{\mu}m$ 간격으로 홈을 파서 직교상의 그물모양을 형성한 후 이 홈에 AgNW와 그래핀을 채워 넣었다. 대표적으로 AgNW 첨가막은 두께 $350{\mu}m$, 전자농도 $1.53{\times}10^{19}/cm^3$, 전자이동도 $6.63{\times}10^5cm^2/Vs$, 비저항 $0.28{\Omega}{\cdot}cm$로 가장 우수한 전기적 특성을 지닌 것으로 평가되었다. 또한 그래핀 첨가막은 두께 $360{\mu}m$, 전자농도 $7.74{\times}10^{17}/cm^3$, 전자이동도 $0.17cm^2/Vs$, 비저항 $4.78{\Omega}{\cdot}cm$이었다. 550 nm 광투과는 AgNW 첨가막 98.1%, 그래핀 첨가막 80.9%로 투명한 전도성 막이 형성되었다. 모든 막이 평면과 휜 상태에서 LED 점등 실험에서 전구의 밝기에 차이가 있었으나 불이 켜졌다. $150{\pm}5^{\circ}C$의 열판에서 박테리아 셀룰로오스 막은 형태가 매우 안정하였으나 같은 두께의 PET는 형태가 심하게 변형되었다. 이러한 연구 결과를 통해 박테리아 셀룰로오스 기반의 투명전도성막을 제조할 수 있는 가능성을 확인하였다.

Keywords

References

  1. Catrysse, P. B. and Fan, S., "Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices," Nano Lett., 10, 2944-2949(2010). https://doi.org/10.1021/nl1011239
  2. Kuang, P., Park, J. M., Leung, W., Mahadevapuram, R. C., Nalwa, K. S., Kim, T. G., Chaudhary, S., Ho, K. M. and Constant, K. A., "New Architecture for Transparent Electrodes: Relieving the Trade-Off Between Electrical Conductivity and Optical Transmittance," Adv. Mater., 23, 2469-2473(2011). https://doi.org/10.1002/adma.201100419
  3. Kang, M. G.; Kim, M. S.; Kim, J. and Guo, L. J., "Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes," Adv. Mater., 20, 4408-4413(2008). https://doi.org/10.1002/adma.200800750
  4. Cannon, R. E. and Anderson, S. M., "Biogenesis of Bacterial Cellulose," Crit. Rev. Microbiol., 17, 435-447(1991). https://doi.org/10.3109/10408419109115207
  5. Klemm, D., Schumann, D. Udhard, U. and Marsch, S., "Bacterial Synthesized Cellulose-artificial Blood Vessels for Microsurgery," Prog. Polym. Sci., 26, 1561-1603(2001). https://doi.org/10.1016/S0079-6700(01)00021-1
  6. Moon, S. H., Park, J. M., Chun, H. Y. and Kim, S. J., "Comparisons of Physical Properties of Bacterial Cellulose Produced in Different Culture Conditions Using Saccharified Food Wastes," Biotech. Bioprocess. Eng., 11, 26-31(2006). https://doi.org/10.1007/BF02931864
  7. Granqvist, C. G. and Hultaker, A., "Transparent and Conducting ITO Films; New Developments and Application," Thin Solid Films, 411, 1-5(2002). https://doi.org/10.1016/S0040-6090(02)00163-3
  8. Hoffman, R. L., Norris, B. J. and Wager, J. F., "ZnO-based Transparent Thin-film Transistors," Appl. Phys. Lett., 82, 735-733 (2003).
  9. Seo, S. W., Won, S. H., Chae, H. Y. and Cho, S. M., "Low-tem-Perature Growth of Highly Conductive and Transparent Aluminum-doped ZnO Film by Ultrasonic-mist Deposition," Korean J. Chem. Eng., 29, 525-528(2012). https://doi.org/10.1007/s11814-011-0207-1
  10. Seo, S. J., Choi, C. G., Hwang, Y. H. and Bae, B. S., "High Performance Solution Processed Amporphous Zinc Tin Oxide Thin Film Transistor," J. Phys, D: Appl. Phys. 42, 035106(2009). https://doi.org/10.1088/0022-3727/42/3/035106
  11. Linsebigler, A. L., Lu, G. Q. and Yates, Jr., J. T., "Photocatalysis on TiO2 Surfaces: Principles, Mechanism, and selected Results," Chem. Rev., 95, 735-758(1995). https://doi.org/10.1021/cr00035a013
  12. Choi, J. S., Sauer, G., Nielsch, K., Wehrspohn, R. B. and Gosele, U., "Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio," Chem. Mater., 15, 776-779(2003). https://doi.org/10.1021/cm0208758
  13. Geim, A. K. and Novoselov, K. S., "The Rise of Graphene," Nat. Mater., 6, 183(2007). https://doi.org/10.1038/nmat1849
  14. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N. and Heer, W. A., "Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics," J. Phys. Chem. B, 108, 19912-19916(2004). https://doi.org/10.1021/jp040650f
  15. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud'Homme, R. K. and Brinson, L. C., "Functionalized Graphene Sheets for Polymer Nanocomposites," Nat. Nanotechnol., 3, 327-331(2008). https://doi.org/10.1038/nnano.2008.96
  16. Yim, E. C., Kim, S. J., Oh, I. K. and Kee, C. D., "Plasma Surface Modification of Graphene and Combination with Bacteria Cellulose," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 1-6(2013). https://doi.org/10.9713/kcer.2013.51.1.1
  17. Alexander, W. J. and Mitchell, R. L., "Rapid Measurement of Cellulose Viscosity by Nitration Methods," Anal. Chem., 21, 1497-1500(1949). https://doi.org/10.1021/ac60036a018
  18. Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K. H., Lee, D., Lee, S. S. and Ko, S. H., "Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network," Adv. Mater., 24, 3326-3332(2012). https://doi.org/10.1002/adma.201200359

Cited by

  1. 박테리아 셀룰로오스 기반 전도성 막의 전도도 향상을 위한 PEDOT:PEG와 황산혼합액 코팅의 영향 vol.54, pp.1, 2013, https://doi.org/10.9713/kcer.2016.54.1.114