DOI QR코드

DOI QR Code

Lysozyme Crystallization in Droplet-based Microfluidic Device

액적기반 미세유체장치에서 라이소자임 결정화

  • Ko, Kwan-Young (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, In-Ho (Department of Chemical Engineering, Chungnam National University)
  • Received : 2013.08.08
  • Accepted : 2013.10.09
  • Published : 2013.12.01

Abstract

Lysozyme crystallization was performed by using flow-focusing chip in droplet-based microfluidic system. Water-in-oil droplets were formed in the system and collected on petri-dish and cross type mold. Liquid-liquid reaction of lysozyme and sodium chloride occurred in the droplet and crystals were observed through microscope. Solution pH was varied as 4.8 and 7.2. Crystals of polyhedron and plate-like shape were obtained at pH 4.8, while needle structure crystals formed at pH 7.2. Lysozyme in single droplet for two pHs were crystallized with constant or decreased droplet size. However, crystals at pH 4.8 were only obtained in the droplet of which size was increased by the interaction between droplets. Droplet volume did not change at pH 7.2 and crystals formed in both droplets.

액적기반 미세유체 시스템을 이용해 난백단백질인 라이소자임의 결정화실험을 하였다. Flow-focusing 칩을 이용해 water-in-oil 형태의 액적을 만들고 페트리 디쉬와 십자몰드에 넣은 후, 액적 내부에서 라이소자임 수용액과 침전제 (NaCl) 사이의 액-액 반응을 관찰하였다. 그리고 수용액의 pH가 4.8일 때와 7.2일 때의 결정형태를 비교하였다. 그 결과, pH 4.8에서는 다면체 또는 판상형의 결정이 형성되었고, pH 7.2에서는 침상형 결정이 생성되었다. pH 4.8, 7.2 두 경우 액적이 홀로 있을 때에는 액적부피가 유지되거나 감소하면서 결정이 형성되었다. 하지만 액적이 서로 인접해 있을 때는 액적사이의 상호작용이 관찰되었고, 두 pH에서 다른 경향성을 보였다. pH 4.8에서는 인접한 액적의 부피에 영향을 주어 한 액적의 부피가 커졌고, 부피가 커진 액적에서 결정이 형성되었다. pH 7.2에서는 부피에 영향을 서로 주지 않고 각각의 액적에서 결정이 형성되었다.

Keywords

References

  1. Alderton, G. and Fevold, H. L., "Direct Crystallization of Lysozyme from Egg White and Some Crystalline Salts of Lysozyme," Bio. Chem., 164, 1(1946).
  2. "The study on structural proteomics and practical use technique of new medicine development," Biotech Policy Research Center, 2010.
  3. Atencia, J. and Beebe, D. J., "Controlled Microfluidic Interfaces," Nature, 437(7059), 648-655(2005). https://doi.org/10.1038/nature04163
  4. Seo, S. W., Ko, K. Y., Lee, C. S. and Kim, I. H., " Biomineralization in Microfluidic Crystallizer," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(1), 151-156(2013). https://doi.org/10.9713/kcer.2013.51.1.151
  5. Auroux, P.-A., Iossifidis, D., Reyes, D. R. and Manz, A., "Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications," Anal. Chem., 74, 2637-2652(2002). https://doi.org/10.1021/ac020239t
  6. Li, L. and Ismagilov, R. F., "Protein Crystallization Using Microfluidic Technologies Based on Valves, Droplets, and Slipchip," Annu. Rev. Biophys., 39, 139-158(2010). https://doi.org/10.1146/annurev.biophys.050708.133630
  7. Du, W., Li, L., Nichols, K. P. and Ismagilov, R. F., "Slipchip," Lab chip, 9(16), 2286-2292(2009). https://doi.org/10.1039/b908978k
  8. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(5), 545-555(2010).
  9. Kang, S. M., Choi, C. H., Kim, J. M. and Lee, C. S., "Synthesis Technology of Functional Colloid Particles and Its Applications," Clean Technol., 18(4), 331-340(2012). https://doi.org/10.7464/ksct.2012.18.4.331
  10. Kang, S. M., Choi, C. H., Hwang, S. R., Jung, J. M. and Lee, C. S., "Microfluidic Preparation of Monodisperse Multiple Emulsion using Hydrodynamic Control," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(4), 733-737(2012). https://doi.org/10.9713/kcer.2012.50.4.733
  11. Thorsen, T., Roberts, R. W., Arnold, F. H. and Quake, S. R., "Dynamic Pattern Formation in a Vesicle-generating Microfluidic Device," Phys. Rev. Lett., 86, 4163-4166(2001). https://doi.org/10.1103/PhysRevLett.86.4163
  12. Anna, S. L., Bontoux, N. and Stone, H. A., "Formation of Dispersions Using 'Flow focusing' in Microchannels," Appl. Phys. Lett., 82, 364-366(2003). https://doi.org/10.1063/1.1537519
  13. Zeng, S., Li, B., Su, X., Qin, J. and Lin, B., "Microvalve-actuated Precise Control of Individual Droplets in Microfluidic Devices," Lab Chip, 9, 1340-1343(2009). https://doi.org/10.1039/b821803j
  14. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., "Monodisperse Double Emulsions Generated from a Microcapillary Device," Science, 308, 537-541(2005). https://doi.org/10.1126/science.1109164
  15. Fair, R. B., "Digital Microfluidics: Is a True Lab-on-a-chip Possible?," Microfluidics and Nanofluidics, 3, 245-281(2007). https://doi.org/10.1007/s10404-007-0161-8
  16. Huh, Y. S., Kim, H. W. and Kim, I. H., "Purification of Lysozyme from Egg White by Multicycle Ion Exchange Chromatography," Korean Journal of Biotechnology and bioengineering, 18(2), 122-126(2003).
  17. Carvajal, C. and Mcdonald, K., "Growth and Characterization of Lysozyme Crystals in Varying Precipitants," Young Scholars Program, 2010.
  18. Baret, J. C., "Surfactants in Droplet-based Microfluidics," Lab Chip, 12, 422-433(2011).

Cited by

  1. Increase in Voltage Efficiency of Picoinjection using Microfluidic Picoinjector Combined Faraday Moat with Silver Nanoparticles Electrode vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.472