DOI QR코드

DOI QR Code

선택취수설비 굴착시 지하수 유입 방지를 위한 그라우팅 효과의 모델링 예측 및 평가

Forecasting and Assessment of the Grouting Effect, using a Numerical Model, to Prevent Groundwater Inflow during Excavation of a Vertical Shaft for a Selective Intake Structure

  • 투고 : 2013.07.25
  • 심사 : 2013.09.23
  • 발행 : 2013.09.30

초록

대규모 저수지에서 상수원 선택취수설비의 수직구 굴착시 저수지 및 주변 지층으로부터의 지하수 유입이 발생할 수 있어 그라우팅을 통한 차수가 요구된다. 본 연구에서는 소양강댐 우안의 선택취수설비 공사 중에 발생할 수 있는 지하수 유입량을 그라우팅 실시 여부에 따라 모사하고 시공 중의 실제 유입량과 비교하였다. 수직구에 그라우팅이 시공되지 않은 경우에는 445~754 $m^3/d$, 그라우팅이 시공된 경우에는 58~96 $m^3/d$의 지하수가 수직구내로 유입되는 것으로 예상되었으며, 실제 그라우팅을 거친 후 굴착 과정에서 배출된 지하수량을 측정한 결과 30~100 $m^3/d$의 범위를 보여 예측 수량과 유사한 것으로 나타났다. 수직구의 작업 안정성 확보 및 원활한 공정을 위해서는 수치모델을 활용한 그라우팅 효과의 사전 평가가 필요하며 이를 근거로 그라우팅 시공을 선행한 후 굴착이 진행되는 것이 필요하다.

The vertical shaft of a selective intake structure, which is constructed in a large reservoir, is required to be impermeable and to employ a grouting technology to prevent water inflow from the reservoir or surrounding ground. In this study, groundwater inflow is estimated using a numerical model for two cases (i.e., grouting or non-grouting cases at the exterior of a vertical shaft) and compared with data measured during an excavation at the construction site of a selective intake structure in the Soyang reservoir, Korea. Groundwater inflow is estimated to range from 444 to 754 $m^3/d$ in the case of non-grouting and from 58 to 95 $m^3/d$ in the case of grouting. The groundwater inflow measured in a vertical shaft, which ranges from 30 to 100 $m^3/d$, is similar to the simulated amount. It is recommended that before the excavation of a shaft, water inflow is estimated using a numerical model and a grouting test to ensure excavation stability and improve excavation efficiency.

키워드

참고문헌

  1. Heinz, W. F., 1988, Pre-cementation of deep shaft, International Journal of Mine Water, 7(4), 1-12.
  2. Henn, R. W., 1996, Practical Guide to Grouting of Underground Structures, Thomas Telford Publication, UK, 188p.
  3. K-Water, 2008, Technical Specification on the Construction of Dam and Water Facilities, 1463p (in Korean).
  4. K-Water, 2009a, Report on the Geology and Geotechnics for the Construction Site of a Selective Intake Structure in the Soyang Multipurpose Dam Reservoir, 214p (in Korean).
  5. K-Water, 2009b, Report on the Design of a Selective Intake Structure in the Soyang Multipurpose Dam Reservoir, 465p (in Korean).
  6. K-Water, 2011, Complementary Report on the Design of a Selective Intake Structure in the Soyang Multipurpose Dam Reservoir, 116p (in Korean).
  7. Kim, D. G. and Kim, G. W., 2001, Field experiments on the cutoff grouting around waterway tunnel, The Journal of Engineering Geology, 11(1), 81-99 (in Korean).
  8. Kim, G. B., Son, Y. C., and Seo, K. S., 2010, Effect of cut-off wall near the entrance of spillway tunnel, The Journal of Engineering Geology, 20(2), 147-153 (in Korean).
  9. Kim, J. T., Lee, G. S., and Lee, J. K., 2008, The study on the change of the selective intake gate in dam. In Proceedings of 2008 Conference of Korea Water Resources Association, 334-349 (in Korean).
  10. Koyama, T., Katayama, T., Tanaka, T., Kuzuha, Y., and Ohnishi. Y., 2013, Development of a numerical model for grout injection and its application to the in situ grouting test at the Grimsel test site, Switzerland, Geosystem Engineering, 16(1), 26-36. https://doi.org/10.1080/12269328.2013.780766
  11. Park, H. I., Jang, K. H., Ji, J. M., and Ko, I. S., 1974, Geologic Map of the Naepyung Area (Scale 1:50,000), Geological Survey of Korea, 29p (in Korean).
  12. Wang, X. G., Gao, E. X., Sun, X. L., Hao, Z. Y., and Zhu, R. Z., 2011, The application of pre-grouting in the construction of vertical shaft, Advanced Materials Research, 402, 643-647. https://doi.org/10.4028/www.scientific.net/AMR.402.643