DOI QR코드

DOI QR Code

Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries

  • Jang, Donghyuk (Department of Energy Science, Sungkyunkwan University) ;
  • Palanisamy, Kowsalya (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yunok (Department of Energy Science, Sungkyunkwan University) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University)
  • 투고 : 2013.09.07
  • 심사 : 2013.10.04
  • 발행 : 2013.09.30

초록

The electrochemical properties of Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ and pure $LiFe_{0.5}Mn_{0.5}PO_4$ olivine cathodes are examined and the lattice parameters are refined by Rietveld analysis. The calculated atomic parameters from the refinement show that $Mg^{2+}$ doping has a significant effect in the olivine $LiFeMnPO_4$ structure. The unit cell volume is 297.053(2) ${\AA}^3$ for pure $LiFe_{0.5}Mn_{0.5}PO_4$ and is decreased to 296.177(1) ${\AA}^3$ for Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample. The doping of $Mg^{2+}$ cation with atomic radius smaller than $Mn^{2+}$ and $Fe^{2+}$ ion induces longer Li-O bond length in $LiO_6$ octahedra of the olivine structure. The larger interstitial sites in $LiO_6$ octahedra facilitate the lithium ion migration and also enhance the diffusion kinetics of olivine cathode material. The $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample with larger Li-O bond length delivers higher discharge capacities and also notably increases the rate capability of the electrode.

키워드

참고문헌

  1. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc., 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  2. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, and J.B. Goodenough, J. Electrochem. Soc., 144, 1609 (1997). https://doi.org/10.1149/1.1837649
  3. B. Kang and G. Ceder, Nature, 458, 190 (2009). https://doi.org/10.1038/nature07853
  4. A. Yamada and S.-C. Chung, J. Electrochem. Soc., 148, A960 (2001). https://doi.org/10.1149/1.1385377
  5. A. Yamada, Y. Kudo and K.-Y. Liu, J. Electrochem. Soc., 148, A1153 (2001). https://doi.org/10.1149/1.1401083
  6. A.S. Andersson, J.O. Thomas, B. Kalska and L. Haggstrom, Electrochem. Solid-State Lett., 3, 66 (2000).
  7. N.N. Bramnik, K.G. Bramnik, K. Nikolowski, M. Hinterstein, C. Baehtz, and H. Ehrenberg, Electrochem. Solid-State Lett., 8, A379 (2005). https://doi.org/10.1149/1.1940487
  8. K.-W. Nam, W.-S. Yoon, K. Zaghib, K. Yoon Chung, and X.-Q. Yang, Electrochem. Commun, 11, 2023 (2009). https://doi.org/10.1016/j.elecom.2009.08.044
  9. M.-R. Yang and W.-H. Ke, J. Electrochem. Soc., 155, A729 (2008). https://doi.org/10.1149/1.2960933
  10. A. Vadivel Murugan, T. Muraliganth, and A. Manthiram, J. Electrochem. Soc., 156, A79 (2009). https://doi.org/10.1149/1.3028304
  11. D. Arumugam, G. Paruthimal Kalaignan, and P. Manisankar, J. Solid State Electrochem, 13, 301 (2009). https://doi.org/10.1007/s10008-008-0533-3
  12. G. Chen, J.D. Wilcox, and T.J. Richardson, Electrochem. Solid-State Lett., 11, A190 (2008). https://doi.org/10.1149/1.2971169
  13. J.-W. Lee, M.-S. Park, B. Anass, J.-H. Park, M.-S. Paik, and S.-G. Doo, Electrochim. Acta, 55, 4162 (2010). https://doi.org/10.1016/j.electacta.2010.02.097
  14. S.-Y. Chung, J.T. Bloking, and Y.-M. Chiang, Nat Mater, 1, 123 (2002). https://doi.org/10.1038/nmat732
  15. X. Ou, G. Liang, L. Wang, S. Xu, and X. Zhao, J. Power Sources, 184, 543 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.077
  16. J. Kim, Y.-U. Park, D.-H. Seo, J. Kim, S.-W. Kim, and K. Kang, J. Electrochem. Soc., 158, A250 (2011). https://doi.org/10.1149/1.3524260
  17. D. Jang, K. Palanisamy, J. Yoon, Y. Kim, and W.-S. Yoon, J. Power Sources, 244, 581 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.108
  18. M. Balasubramanian, X. Sun, X.Q. Yang, and J. McBreen, J. Power Sources, 92, 1 (2001). https://doi.org/10.1016/S0378-7753(00)00493-6
  19. J. Yao, S. Bewlay, K. Konstantionv, V.A. Drozd, R.S. Liu, X.L. Wang, H.K. Liu, and G.X. Wang, J. Alloys Compd, 425, 362 (2006). https://doi.org/10.1016/j.jallcom.2006.01.038
  20. Y. Dong, H. Xie, J. Song, M. Xu, Y. Zhao, and J.B. Goodenough, J. Electrochem. Soc., 159, A995 (2012). https://doi.org/10.1149/2.037207jes
  21. G.K.P. Dathar, D. Sheppard, K.J. Stevenson, and G. Henkelman, Chem. Mat., 23, 4032 (2011). https://doi.org/10.1021/cm201604g
  22. T. Shiratsuchi, S. Okada, T. Doi, and J.-i. Yamaki, Electrochim. Acta, 54, 3145 (2009). https://doi.org/10.1016/j.electacta.2008.11.069

피인용 문헌

  1. Electrochemical Performance of Carbon Coated LiMn2O4Nanoparticles using a New Carbon Source vol.7, pp.2, 2016, https://doi.org/10.5229/JECST.2016.7.2.139
  2. Surface-modified Li[Ni0.8Co0.15Al0.05]O2Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating vol.7, pp.4, 2016, https://doi.org/10.5229/JECST.2016.7.4.263
  3. Zr-doping effect on the capacity retention of LiNi 0.5 Mn 1.5 O 4–δ cycled between 5.0 and 1.0 V: In situ synchrotron X-Ray diffraction study vol.368, 2017, https://doi.org/10.1016/j.jpowsour.2017.09.056
  4. Morphology Effect on Enhanced Li+-Ion Storage Performance for Ni2+/3+and/or Co2+/3+Doped LiMnPO4Cathode Nanoparticles vol.2015, 2015, https://doi.org/10.1155/2015/970856