참고문헌
- Bickel, P. J. and Levina, E. (2008a). Covariance regularization by thresholding, The Annals of Statistics, 36, 2577-2604. https://doi.org/10.1214/08-AOS600
- Bickel, P. J. and Levina, E. (2008b). Regularized estimation of large covariance matrices, The Annals of Statistics, 36, 199-227. https://doi.org/10.1214/009053607000000758
- Bouveyron, C., Girard, S. and Schmid, C. (2007). High-dimensional data clustering, Computational Statistics & Data Analysis, 52, 502-519. https://doi.org/10.1016/j.csda.2007.02.009
- Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation, Journal of the American Statistical Association, 106, 672-6684. https://doi.org/10.1198/jasa.2011.tm10560
- Cai, T., Zhang, C. H. and Zhou, H. H. (2010). Optimal rates of convergence for covariance matrix estimation, The Annals of Statistics, 38, 2118-2144. https://doi.org/10.1214/09-AOS752
- Choe, S., Kim, S., Lee, C., Yang, W., Park, Y., Choi, H., Chung, H., Lee, D. and Hwang, B. Y. (2011). Species identification of Papaver by metabolite profiling, Forensic Science International.
- Chun, H. and Keles, S. (2010a). Sparse partial least squares regression for simultaneous dimension reduction and variable selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72, 3-25. https://doi.org/10.1111/j.1467-9868.2009.00723.x
- Chung, D. and Keles, S. (2010b). Sparse partial least squares classification for high dimensional data, Statistical Applications in Genetics and Molecular Biology, 9, 17.
- Clemmensen, L., Hastie, T., Witten, D. and Ersboll, B. (2011). Sparse discriminant analysis, Technometrics, 53, 406-413. https://doi.org/10.1198/TECH.2011.08118
- Fisher, T. J. and Sun, X. (2011). Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix, Computational Statistics & Data Analysis, 55, 1909-1918. https://doi.org/10.1016/j.csda.2010.12.006
- Ghosh, D. and Chinnaiyan, A. M. (2002). Mixture modelling of gene expression data from microarray experiments, Bioinformatics, 18, 275-286. https://doi.org/10.1093/bioinformatics/18.2.275
- Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood, Biometrika, 93, 85-98. https://doi.org/10.1093/biomet/93.1.85
- Kim, N., Kim, K., Choi, B. Y., Lee, D. H., Shin, Y. S., Bang, K. H., Cha, S. W., Lee, J. W., Choi, H. K., Jang, D. S. and Lee, D. (2011). Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS, Journal of Agricultural and Food Chemistry, 59, 10435-10441. https://doi.org/10.1021/jf201718r
- Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, 88, 365-411. https://doi.org/10.1016/S0047-259X(03)00096-4
- Levina, E., Rothman, A. and Zhu, J. (2008). Sparse estimation of large covariance matrices via a nested Lasso penalty, The Annals of Applied Statistics, 245-263.
- Mai, Q., Zou, H. and Yuan, M. (2012). A direct approach to sparse discriminant analysis in ultra-high dimensions, Biometrika, 99, 29-42. https://doi.org/10.1093/biomet/asr066
- McLachlan, G. J., Bean, R. and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data, Bioinformatics, 18, 413-422. https://doi.org/10.1093/bioinformatics/18.3.413
- McNicholas, P. D. and Murphy, T. B. (2010). Model-based clustering of microarray expression data via latent Gaussian mixture models, Bioinformatics, 26, 2705-2712. https://doi.org/10.1093/bioinformatics/btq498
- Palmitesta, P. and Provasi, C. (n.d.). Computer Generation of Random Vectors from Continuous Multivariate Distributions. Available from: http://www.econpol.unisi.it/dmq/pdf/DMQ WP34.pdf.
- Rothman, A. J., Levina, E. and Zhu, J. (2009). Generalized thresholding of large covariance matrices, Journal of the American Statistical Association, 104, 177-186. https://doi.org/10.1198/jasa.2009.0101
- Rothman, A. J., Levina, E. and Zhu, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions, Biometrika, 97, 539-550. https://doi.org/10.1093/biomet/asq022
- Schafer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Statistical Applications in Genetics and Molecular Biology, 4, 32.
- Shen, H. and Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation, Journal of Multivariate Analysis, 99, 1015-1034. https://doi.org/10.1016/j.jmva.2007.06.007
- Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences, 99, 6567-6572. https://doi.org/10.1073/pnas.082099299
- Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, 98, 5116-5121. https://doi.org/10.1073/pnas.091062498
- Zou, H., Hastie, T. and Tibshirani, R. (2006). Sparse principal component analysis, Journal of Computational and Graphical Statistics, 15, 265-286. https://doi.org/10.1198/106186006X113430