• 제목/요약/키워드: modified Choelsky decomposition

검색결과 1건 처리시간 0.014초

고차원 데이터에서 공분산행렬의 추정에 대한 비교연구 (A Comparative Study of Covariance Matrix Estimators in High-Dimensional Data)

  • 이동혁;이재원
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.747-758
    • /
    • 2013
  • 공분산 행렬은 다변량 통계분석에서 중요한 역할을 하고 있으며 전통적인 다변량 분석의 경우 표본 공분산 행렬이 참공분산 행렬의 추정량으로 주로 사용되었다. 하지만 변수의 수가 표본의 크기보다 훨씬 큰 고차원 데이터와 같은 경우에는 표본 공분산 행렬은 비정칙행렬이 되어 기존의 다변량 기법을 사용하는 데 적절하지 않을 수가 있다. 최근 이러한 문제점을 해결하기 위해 축소추정, 경계추정, 수정 콜레스키 분해 추정 등의 새로운 공분산 행렬의 추정량들이 제안되었다. 본 논문에서는 추정량들의 성능에 영향을 미칠 수 있는 여러 현실적인 상황들을 가정하여 모의실험을 통해 참공분산 행렬의 추정량들의 성능을 비교하였다.