DOI QR코드

DOI QR Code

Preparation of Porous Ceramic Bead using Mine Tailings and Its Applications to Catalytic Converter

광미(鑛尾)를 활용(活用)한 다공성 세라믹 비드 제조(製造) 및 촉매(觸媒) 변환기(變換機)로의 응용(應用)

  • Seo, Junhyung (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Kim, Seongmin (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Han, Yosep (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Kim, Yodeuk (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Lee, Junhan (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Park, Jaikoo (Department of Natural Resources and Environmental Engineering, Hanyang University)
  • 서준형 (한양대학교 자원환경공학과) ;
  • 김성민 (한양대학교 자원환경공학과) ;
  • 한요셉 (한양대학교 자원환경공학과) ;
  • 김유득 (한양대학교 자원환경공학과) ;
  • 이준한 (한양대학교 자원환경공학과) ;
  • 박재구 (한양대학교 자원환경공학과)
  • Received : 2013.01.01
  • Accepted : 2013.04.01
  • Published : 2013.08.30

Abstract

The porous ceramic beads using mine tailing were prepared and applied to catalytic converter for NOx/SOx removal. Catalytic support was used synthesized mesoporous silica (SBA-15) which coated on surface. Internal structure for porous ceramic beads was composed of three-dimensional network structure and porosity was about 80%. In addition, the specific surface area for mesoporous silica(SBA-15) coated on converter was significantly increased 55 $m^2/g$ compared with 0.8 $m^2/g$ before coating. NOx/SOx removal experiment was performed using $V_2O_5$ and $V_2O_5$/CuO converter. NOx conversion ratio for $V_2O_5$/CuO converter was approximately increased 10% compared to $V_2O_5$ converter. In addition, catalytic converter of $V_2O_5$/CuO was shown to remove 95% of NOx and 90% of SOx at reaction temperature of $350^{\circ}C$, space velocity of 10000 $h^{-1}$ and $O_2$ concentrations of 5%, respectively.

광미를 이용하여 다공성 세라믹 비드를 제조한 후 NOx/SOx 제거용 촉매 변환기로 응용하였다. 변환기 표면에 코팅처리된 촉매 지지체는 합성한 메조포러스 실리카(SBA-15)를 사용하였다. 다공성 세라믹 변환기의 내부 구조는 기공과 기공이 서로 연결되어 있는 3차원 망상구조이며 기공율은 80%로 나타났다. 또한, 촉매 변환기의 비표면적은 SBA-15 코팅 전 0.8 $m^2/g$에서 코팅처리 후에는 55 $m^2/g$으로 크게 증가하였다. NOx/SOx 제거 실험은 다공성 세라믹 촉매 변환기 표면에 $V_2O_5$$V_2O_5$, CuO를 함께 담지한 것으로 실시하였다. NOx 전환율은 $V_2O_5$/CuO 변환기가 $V_2O_5$ 변환기에 비해 약 10% 정도 높게 나타났다. 또한, $V_2O_5$/CuO 변환기는 반응온도 $350^{\circ}C$, 공간속도 10000 $h^{-1}$, 산소농도 5%에서 NOx 95%, SOx 90% 이상의 전환율을 각각 나타냈다.

Keywords

References

  1. J.K. OH et al., 1998 : A study on the Removal of Arsenic from Closed-Mine Tailings by Acid-Leaching Process, Journal of KoSES, 3(3), pp21-31.
  2. M.Y. Jung, Y.W. Choi and M.C. Jung., 2006 : Properties of the Tailings from the Sangdong Mine and Its Recycling, 43(5), pp486-497.
  3. A.H. Jeon, J.H. Park and Park. J.K., 2012 : Evaluation on ab/ desorption of Water Vapor for Mesoporous Silica Synthesized using the Mineral Tailing, 49(6), pp 799-806
  4. Hjalmarsson, A.K, 1990 : NOx control Technolgies for Coal Combustion, IEA Coal Research, 15.
  5. Benitez, J, 1993 : Process Engineering and Design for Airpollution Control, Englewood Cliffs, NJ, 15.
  6. M.J. Jeon et al., 2012 : Removal of Nitrogen Oxides Using Cu-Mn/$O_2$-Zr$O_2$ Catalyst, Appl. Chem. Eng., 23(3), 348-351.
  7. Bosch, H. and F. Janssen, 1988 : Catalytic Reduction of Nitrogen Oxides, Catal. Today, 2, 369. https://doi.org/10.1016/0920-5861(88)80002-6
  8. M.H. Kim and Nam. I.S, 2001 : Water Tolerance of DeNOx SCR catalyst Using Hydrocarbons: Finding, Improvements and Challenges, Korean J. Chem. Eng., 18, 725. https://doi.org/10.1007/BF02706393
  9. S.M, Lee et al., 2006 : Combined Desulfurization and Denitrification Using Activated Carbon, Proceeding of the 43rd Meeting of KASAE, 500.
  10. I.Y. Lee et al., 2002 : A practical scale evaluation of sulfated $V_2O_5/TiO_2$ catalyst from metatitanic acid for selective catalytic reduction of NO by $NH_3$, Chem. Eng. J., 4000, 1-6.
  11. Y.S. Jang et al., 2008 : De-NOx Characteristics for Cu-ZSM5/Alumina Beads Catalyst Filter in Urea-SCR System, Korea T. of Soc. Auto. Eng., 16, 5, 60-67.
  12. J.W. Park, J.H. Park and Park. J.K, 2007 : De-NOx Characteristics for Pt/r-Alumina/Cordierite Foam Filter of Beads Shape, Korean J. of Atmos. Environ., 23(3), 277-285. https://doi.org/10.5572/KOSAE.2007.23.3.277
  13. J.S. Lee and Park, J.K, 2001 : Preparation of Porous Ceramic Pellets by Pseudo Double-Emulsion Method from 4-phase Foamed slurry, Material J. of Sci. Letters, 20, 205-207. https://doi.org/10.1023/A:1006774029478
  14. J.K. Park and Lee, S.H, 2001 : Observation and segmentataion of gray Images of surface cells in open cellular foams, J. of Ceram. Soc. of Jpn., 109, 7. https://doi.org/10.2109/jcersj.109.S7
  15. J.K. Park and Lee, J.S, 2003 : Preparation of porous cordierite using gelcasting method and its feasibility as a filter, J. Porous Mater, 9, 203-210.
  16. J.S. Lee and Park. J.K, 2003 : Processing of Porous Ceramic Spheres by Pseudo-double-emulaion Method, Ceram. Int, 29, 271-278. https://doi.org/10.1016/S0272-8842(02)00115-3
  17. Y.S. Han, H.J. Kim and Park, J.K, 2004 : Characteristics of NOx Reduction Using $V_2O_5/TiO_2$ Catalyst Coated on Ceramic Foam Filters, Korean J. of Atoms. Environ., 20, 6, 773-781.
  18. Naisheng, Y. et al., 2001 : Synthesis and characterization of Pt/MCM-41 catalyst, Micropor.sand Mesopor, Materials, 6, 377-384.
  19. Lee, S.H. et al., 2002 : Simultaneous Removal of NOx/SOx by Catalyst-loaded Cordierite Porous Filter, Analytical Sci. Tec., 15, 3, 256-262.
  20. Tian, L., D. Ye, and H. Liang, 2002 : Catalytic Performance of a Novel Ceramic-Supported Vanadium Oxide Catalyst for NO reduction with NH3, Catal. Today, 2822, 1-12.
  21. Pilar, S, 1997 : Gelcasting foams for porous ceramics, Am. Ceram. Soc. Bull., 76(10), pp. 61-65.
  22. W.H. Seo et al., 2005 : Preparation of Ag-impregnated Porous Ceramic Beads and Antibacterial Properties, Korean J. of Atoms. Environ., 27, 5, 549-554.
  23. Zhao, D. et al., 1998 : Nomionic triblock and star diblock and star diblock copolymer and oilgomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc. 120(24), 6024-6036. https://doi.org/10.1021/ja974025i
  24. Y.S, Han et al., 2011 : Pore Structure of Mesoporous Silica SBA-15 Prepared Using Mine Tailings, 48(1), pp45-51.
  25. Yu, H., Xue, X. and Huang, D, 2009 : Mesoporous silica based electrochemical sensor for sensitive determination of environmental hormone bisphenol, A. Anal, Chim, Acta, 638(1), 23-28. https://doi.org/10.1016/j.aca.2009.02.013
  26. Qingya. Liu., Zhenyu. Liu, and Weize Wua, 2009 : Effect of $V_2O_5$ additive on simultaneous $SO_2$ and NO removal from flue gas over a monolithic cordierite-based CuO/ $Al_2O_3$ catalyst, Catal. Today, 147, s285-s289. https://doi.org/10.1016/j.cattod.2009.07.013

Cited by

  1. Preparation of Ceramic Bead with Nano Pore Structure by Using Gold Mine Tailing, Haenam vol.55, pp.1, 2018, https://doi.org/10.12972/ksmer.2018.55.1.029