References
- Guyon, I. Elisseeff, A., "An Introduction to Variable and Feature Selection", Journal of Machine Learning Research, Vol.3, pp.1157-1182, 2003.
- Dasgupta, A. Drineas, P. Harb, B. Josifovski, V. Mahnoney, M. W., "Feature Seletion methods for Text Categorization", Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.230-239, 2007.
- Landauer, T. K. Dumais, S. T., "A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge", Psychological Review, Vol.104, No.2, pp.211-240, 1997. https://doi.org/10.1037/0033-295X.104.2.211
- Deerwester, S. C. Dumais, S. T. Landaner, T. K. Furnas, G. W. Harshman, R. A., "Indexing by latent semantic analysis", Journal of the American Society for Information Science, Vol.41, No.6, pp.391-407, 1990. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
- Chakraborti, S. Lothian, R. Wiratunga, N. Watt, S., "Sprinkling: Supervised Latent Semantic Indexing", Advances in Information Retrieval, pp.510-514, 2006.
- Liu, H. Yu, L., "Toward Integrating Feature selection algorithm for Classification and Clustering", IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.4, pp.491-502, 2005. https://doi.org/10.1109/TKDE.2005.66
- Chen, C. M. Lee, H. M. Chang, V. J., "Two novel selection approaches for Web page Classification", Expert Systems with Application, Vol.36, No.1, pp.260-272, 2009. https://doi.org/10.1016/j.eswa.2007.09.008
- Selamat, A. Omatu, S., "Web page Feature Selection and Classification using Neural Networks", Information Sciences, Vol.158, pp.69-88, 2004. https://doi.org/10.1016/j.ins.2003.03.003
- Yang, Y. Pedersen, J. O., "A Comparative Study on Feature Selection in Text Categorization", Proceedings of the 14th International Conference on Machine Learning(ICML '97), pp.412-420, 1997.
- Peng, H. Long, F. Ding, C., "Feature selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.27, No. 8, Aug. pp. 1226-1238, 2005. https://doi.org/10.1109/TPAMI.2005.159
- John, G. Kohavi, R. Pfleger, K., "Irrelevant Feature and the Subset Selection Problem", In Proceedings of 11th International Conference on Machine Learning, pp.121-129, 1994.
- Luukka, P., "Feature selection using fuzzy entropy measures with similarity classifier", Expert Systems with Applications, Vol.38, No.4, pp.4600-4607, 2011. https://doi.org/10.1016/j.eswa.2010.09.133
- Gheyas, I. A. Smith, L. S., "Feature subset selection in large dimensionality domains", Pattern Recognition, Vol.43, No.1, pp.5-13, 2010. https://doi.org/10.1016/j.patcog.2009.06.009
- Kim, J. In, J. Chae, S., "Sementic-based Genetic Algorithm for Feature Selection"', Journal of Korean Society for Internet Information, Vol.13, No.4, pp.1-10, 2012 https://doi.org/10.7472/jksii.2012.13.4.1
- Liu, Y. N. Wang, G. Zhu, X. D., "Feature selection based on adaptive multi-population genetic algorithm", Journal of Jilin University Engineering and Technology Edition, Vol.41, No.6, pp.1690-1693, 2011.
- Sun, J. T. Chen, Z. Zeng, H. J. Lu, Y. C. Shi, C. Y. Ma, W. Y., "Supervised Latent Semantic Indexing for Document Categorization", Fourth IEEE International Conference on Data Mining(ICDM '04), pp.535-538, 2004.
Cited by
- A Methodology for Automatic Multi-Categorization of Single-Categorized Documents vol.20, pp.3, 2014, https://doi.org/10.13088/jiis.2014.20.3.077
- Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification vol.20, pp.1, 2019, https://doi.org/10.7472/jksii.2019.20.1.01