References
- Joseph A. Konstan and Jhon Riedl, "Deconstructing Recommender Systems", IEEE Spectrum, October 2012.
- Adomavicius G. and Tuzhilin, A., "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions", IEEE Trans. Know. and Data Eng., Vol. 17 No. 6, pp. 734-749, 2005. https://doi.org/10.1109/TKDE.2005.99
- Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers and Jhon Riedl, "An Algorithmic Framework for Performing Collaborative Filtering" ACM SIGIR 22nd Int. Conf. Research and Development in Information Retrieval, pp. 230-237, 1999.
- D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, "Using Collaborative Filtering to Weave an Information Tapestry", Communications of the ACM, Vol. 35, No. 12, pp. 61-70 1992.
- John S. Breese, David Heckerman and Carl Kadie, "Empirical Analysis of Predictive Algorithms for Collaborative Filtering", Proc. the 14th Conf. Uncertainty in Artificial Intelligence, pp. 43-52, 1998.
- K. Goldberg, T. Roeder, D. Gupta and C. Perkins, "Eigentaste: A Constant Time Collaborative Filtering Algorithm", Information Retrieval, Vol. 4, No. 2, pp. 133-151, 2001. https://doi.org/10.1023/A:1011419012209
- H. J. Kwon and K. S. Hong, "Personalized Smart TV Program Recommender Based on Collaborative Filtering and a Novel Similarity Method", IEEE Trans. Consum. Electron., Vol. 57, No. 3, pp. 1416-1423, 2011. https://doi.org/10.1109/TCE.2011.6018902
- H. J. Ahn, "A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem", Information Sciences, Vol. 178, No. 1, pp. 37-51, 2008. https://doi.org/10.1016/j.ins.2007.07.024
- D. Lemire and A. Maclachlan, "Slope One Predictors for Online Rating-Based Collaborative Filtering", Proc. 5th SIAM Int. Conf. Data Mining, pp. 471-475, 2005.
- Yu Li, Liu Lu and Li Xuefeng, "A Hybrid Collaborative Filtering Method for Multiple-interests and Multiple-content Recommendation in E-Commerce", Expert Systems with Applications, Vol. 28, No. 1, pp. 67-77, 2005. https://doi.org/10.1016/j.eswa.2004.08.013
- Buhwan Jeong, Jaewook Lee and Hyunbo Cho, "Improving Memory-based Collaborative Filtering via Similarity Updating and Prediction Modulation", Information Sciences, Vol. 18, No. 5, pp. 602-612, 2010.
- Jun Wang, Arjen P. de Vries and Marcel J. T. Reinders, "Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion", Proc. 29th ACM SIGIR Conf. Research and Development in Information Retrieval, pp. 501-508, 2006.
- Bin Cho, Jian-Tao Sun, Jianmin Wu, Qiang Yang and Zheng Chen, "Learning Bidirectional Similarity for Collaborative Filtering", LNCS 5211, pp. 178-194, 2008.
- T. H. Kim and S. B. Yang, "An Improved Neighbor Selection Algorithm in Collaborative Filtering", IEICE Trans. Inform. and Syst., Vol. E88-D, No. 5, pp. 1072-1076, 2005. https://doi.org/10.1093/ietisy/e88-d.5.1072
- Souvik Debnath, Niloy Ganguly and Pabitra Mitra, "Feature Weighting in Content based Recommendation System Using Social Network Analysis", Proc. of the 17th Int. Conf. on World Wide Web, pp. 1041-1042, 2008.
- Karen H. L. Tso-Sutter, Leonardo Balby Marinho and Lars Schmidt-Thieme, "Tag-aware Recommender Systems by Fusion of Collaborative Filtering Algorithms", Proc. of the 2008 ACM Symposium on Applied computing, pp. 1995-1999, 2008.
- Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar and David M. Pennock, "Methods and Metrics for Cold-start Recommendations", Proc. of the 25th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253-260, 2002.
- Huang, Z., Chen, H. and Zeng, D. "Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering", ACM Transactions on Information Systems, Vol. 22, No. 1, pp. 116-142, 2004. https://doi.org/10.1145/963770.963775
- B. N. Miller, I. Albert, S.K. Lam, J.A. Konstan, J. T. Riedl, "MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System on Four Mobile Devices", Proc. of the 2003 Int. Conf. Intelligent User Interfaces, pp. 263-266, 2003.
- http://www.grouplens.org/node/73, MovieLens Data Sets, GroupLens Research in Department of Computer Science and Engineering at the University of Minnesota.