DOI QR코드

DOI QR Code

Electrocaloric Effect and Hystersis Properties of Pb-free Ferroelectric (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 Ceramics

무연 강유전 (Ba0.85Ca0.15)(Ti0.92Zr0.08)O3 세라믹스의 전기열량 효과 및 강유전 이력 특성

  • Kim, You-Seok (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Jeong, Yeong-Ho (Department of Electrical Engineering, Korea National University of Transportation) ;
  • Lee, Jie-Young (School of Computer Science, Semyung University)
  • Received : 2013.10.02
  • Accepted : 2013.10.24
  • Published : 2013.11.01

Abstract

In this study, electrocaloric effects of Pb-free $(Ba_{0.85}Ca_{0.15})(Ti_{0.92}Zr_{0.08})O_3$ ferroelectric ceramics were investigated and discussed using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $140^{\circ}C$. The remnant polarization $P_r$ and coercive field $E_c$ were decreased with increasing temperature. The temperature change ${\Delta}T$ by the electrcaloric effect was calculated by Maxwell's relations, and reached the maximum of ~0.15 at $120^{\circ}C$ under applied electric field of 30 kV/cm.

Keywords

References

  1. D. Q. Xiao, Y. C. Wang, R. L. Zhang, S. Q. Peng, J. G. Zhu, and B. Yang, Mater. Chem. Phys., 57, 182 (1998). https://doi.org/10.1016/S0254-0584(98)00204-1
  2. L. Shebanovs, K. Borman. W. N. Lawless, and A. Kalvane, Ferroelectric., 273, 137 (2002). https://doi.org/10.1080/00150190211761
  3. J. Wang, T. Yang, S. Chen, G. Li, Q. Zhang, and X. Yao, J. Alloys. Compd., 550, 561 (2013). https://doi.org/10.1016/j.jallcom.2012.10.144
  4. X. C. Zheng, G. P. Zheng, Z. Lin, and Z. Y. Jiang, J. Electroceram., 28, 20 (2012). https://doi.org/10.1007/s10832-011-9673-4
  5. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science, 311, 1270 (2006). https://doi.org/10.1126/science.1123811
  6. S. G. Lu, B. Rozic, Q. M. Zhang, Z. Kutnjak, X. Li, E. Furman, L. J. Gorny, M. Lin, B. Malic, M. Kosec, R. Blinc, and R. Pirc, Appl. Phys. Lett., 97, 162904 (2010). https://doi.org/10.1063/1.3501975
  7. Y. Bai, G. P. Zheng, K. Ding, L. Qiao, S. Q. Shi, and D. Guo, J. Appl. Phys., 110, 094103 (2011). https://doi.org/10.1063/1.3658251
  8. J. Wu, D. Xiao. W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang, J. Eur. Ceram. Soc., 32, 891 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.003
  9. D. Saranya, A. R. Chaudhuri, J. Parui, and S. B. Krupanidhi, Bull. Mater. Sci., 32, 259 (2009). https://doi.org/10.1007/s12034-009-0039-3
  10. J. H. Qiu and Q. Jiang, Phys. Fluids., A372, 7191 (2008).
  11. M. Valant, Prog. Mater. Sci., 57, 980 (2012). https://doi.org/10.1016/j.pmatsci.2012.02.001
  12. R. B. Zampiere, G. S. Dias, L. F. Cotica, and I. A. Santos, Scripta. Mater., 66, 542 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.031
  13. Y. Bai, G. P. Zheng, and S. Q. Shi, Mater. Res. Bull., 46, 1866 (2011). https://doi.org/10.1016/j.materresbull.2011.07.038
  14. G. Akcay, S. P. Alpay. G. A. Rossetti, and J. F. Scott, J. Appl, Phys., 103, 024104 (2008). https://doi.org/10.1063/1.2831222