DOI QR코드

DOI QR Code

Influences of Energy Production Estimation Errors on Project Feasibility Indicators of a Wind Project and Critical Factor Analysis by AHP

풍력발전사업 에너지생산량 산정 오차가 사업성지표에 미치는 영향 및 AHP를 이용한 중요인자 분석

  • 김영경 (서울과학기술대) ;
  • 장병만 (서울과학기술대 글로벌융합산업공학과)
  • Received : 2013.02.13
  • Accepted : 2013.04.23
  • Published : 2013.07.31

Abstract

Case studies are made to investigate the relationship between the accuracy of energy production estimation and project feasibility indicators such as rate of return on equity (ROE) and debt service coverage ratio (DSCR) for three wind farm projects. It is found out that 1% improvement in the accuracy of energy production estimation may enhance the ROE by more than 0.5% in the case of P95, thanks to improved financing terms. AHP survey shows that MCP correlation of measured in situ wind data with long term wind speed distribution and hands-on experiences of flow analysis are more important than other factors for more precise annual energy production estimation.

Keywords

References

  1. 권순덕, "단기 관측을 통한 풍력에너지 평가", 한국풍공학회논문집 , 제12권, 제3호(2008), pp. 165-171.
  2. 권순덕, "Uncertainty analysis of wind energy potential assessment", Applied Energy , 제87권(2010), pp.856-865. https://doi.org/10.1016/j.apenergy.2009.08.038
  3. 김건훈, 주영철, 김대호, "1.5MW 풍력발전시스템 출력 성능시험 및 불확실성 분석", 태양에너지학회논문집, 제26권, 제4호(2006), pp. 63-71.
  4. 김상훈, 최점기, "AHP 기법을 이용한 정보화지원사업 평가영역 및 평가항목별 가중치 분석", 한국경영과학회지, 제32권, 제2호(2007), pp.123-140.
  5. 송성환, 권성훈, 박진범, 홍순기 "Delphi를 사용한 AHP 방법론에 관한 연구", 경영과학, 제26권, 제1호(2009), pp.964-971.
  6. 장준호, "프로젝트 파이낸싱 기법에 관한 연구", 건국대학교 국제대학원, 2000.
  7. Claude, A., "Quantifying model uncertainty in complex terrain," 2009.
  8. Cox, M. and P. Harris, "Up a GUM Tree? Try full Monte!," National Physical Laboratory, 2003.
  9. Ferrante, G., "Wind Farm Project Finance : Financing and Technical Requirements- Models and Strategies for Public-Private Partnerships (PPP) : experiences from Italy and Bulgaria," 2007.
  10. Harper, J.P., M.D. Karcher, and M. Bolinger, "Wind Project Financing Structures : A Review and Comparative Analysis," Ernest Orlando Lawrence Berkeley National Laboratory, 2007.
  11. IEC, "61400-12-1 : Wind turbines-Part 12-1 : Power performance measurements of electricity producing wind turbines," 2005.
  12. IEC, "61400-12-1 First edition 2005-12," 2005.
  13. Klug, H., A. Albers, and D. Westermann, "Power Performance Verification," DeutschesWindenergie-Institut.
  14. Klug, H., What does Exceedance Probabilities P90-P75-P50 Mean?, 2006.
  15. Klug, H. and M. Strack, P50-P75-P90 How to reduce the financial Risks of a Wind Farm Project.
  16. Klug, H., Contractual Issues Dealing with Energy Production Warranties, Paper prepresented on the Global Wind Power conference, 2-5 April, 2002, Paris, France.
  17. Lange, M., Analysis of the uncertainty of the wind power prediction, 2003.
  18. Mekan, M.A., Wind Power projects on project finance basis : Risk Allocation, IFC, 2006.
  19. Mellinghoff, H., Wind Farm Power Performance Verification.
  20. Nielsen, M., H.E. Jorgensen, and S.T. Frandsen, EWEC 2009, Wind and wake models for IEC 61400-1 site assessment, 2009.
  21. Pedersen, T.F., S. Gjenging, P. Ingham, J.K. Hansen, and H.K. Jorgensen, Wind Turbine Power Performance Verification in Complex Terrain and Wind Farms, Riso National Laboratory, Roskilde, 2002.
  22. Pentalum, SpiDAR Revolutionary Wind Li DAR, 2010.
  23. Spengemann, P. and V. Borget, Reviewand analysis of wind farm operational data Validation of the predicted energy yield of wind farms based on real energy production data.
  24. Taylor, M., P. Mackiewicz, M.C. Browner, and M. Markus, An Analysis of Wind Resource Uncertainty in Energy Production Estimates, AWS Truewind, LLC, Windpower Conference, Paris, France, 2002.
  25. UNEP, GEF, Financial Risk Management Instruments for Renewable Energy projects, 2008.
  26. UNEP, SEFI, Financial Risk Management Instruments for Renewable Energy Projects, UNEP Summary document, 2004.

Cited by

  1. vol.13, pp.2, 2017, https://doi.org/10.7849/ksnre.2017.6.13.2.030