DOI QR코드

DOI QR Code

Effect of immobilization of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on anodized implants coated with heparin for improving alveolar ridge augmentation in beagle dogs: Radiographic observations

양극산화 임플란트 표면에 적용된 헤파린과 골형성단백질(rhBMP-2)이 치조골 증대에 미치는 효과: 방사선학적 평가

  • Lee, So-Hyoun (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University) ;
  • Jo, Jae-Young (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Institute of Translational Dental Sciences, Pusan National University)
  • 이소현 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소) ;
  • 조재영 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소) ;
  • 정창모 (부산대학교 치의학전문대학원 치과보철학교실, 중개치의학연구소)
  • Received : 2013.09.16
  • Accepted : 2013.10.08
  • Published : 2013.10.31

Abstract

Purpose: The aim of this study was to evaluate the effect of immobilization of the recombinant human bone morphogenetic protein 2 (rhBMP-2) on anodized titaum implants coated with heparin to enhance the vertical alveolar ridge augmentation in the supraalveolar peri-implant defect region. Materials and methods: 18 pure titanium implants (7.0 mm in length, 3.5 mm in diameter) were manufactured for this study. All implants were anodized and designed insertion reference line marked with laser at the apical 2.5 mm from the fixture platform. Implantation of 6 noncoated anodized implants (Control group), 6 anodized implants physically adsorbed with rhBMP-2 by dip and dry method (BMP group) and 6 anodized implants chemically immobilized 3,4-dihydroxyphenylalanine (DOPA)-heparin/ rhBMP-2 (Hep-BMP group) was performed in the both mandibular of three male adult beagle dogs using split-mouth design. Radiologic examinations were performed immediately after implant placement and 4 and 8 weeks after implant placement. The amount of mesio-distal bone augmentation was evaluated by measuring the vertical distance from the platform to the marginal bone. Statistical analysis was performed using one-way analysis of variance (SPSS version 18.0) and multiple comparison analysis of The Kruskal-Wallis test and the Mann-Whitney U test. Statistical significance was established at the 5% significant level. Results: At the 4 weeks vertical alveolar ridge augmentation of Control group, BMP group and Hep-BMP group is $0.09{\pm}0.22mm$, $1.02{\pm}0.72mm$, and $1.29{\pm}0.51mm$, At the 8 weeks $0.11{\pm}1.26mm$, $1.11{\pm}0.58mm$, $1.59{\pm}0.79mm$ according to radiographic observations. The two experimental groups showed a significantly increasing in vertical bone height compared with the control group (P<.05). However, there is no significant difference between the BMP group and Hep-BMP group (P>.05). Conclusion: The rhBMP-2 coated implants were enhanced the vertical bone growth in the supraalveolar peri-implant defect area. However, there is no significant difference between chemically and physically coating method.

연구 목적: 본 연구는 골형성단백질의 서방출을 위해 헤파린과 골형성단백질 (rhBMP-2)을 화학적으로 고정시킨 양극산화 티타늄 임플란트가 골 결손부에서 임플란트 주변의 수직적 골증대에 미치는 효과를 방사선학적으로 평가하고자 시행되었다. 연구 재료 및 방법: Pure-Titanium을 사용하여 길이 7.0 mm, 직경 3.5 mm의 실험용 임플란트 18개를 제작하였다. 모든 임플란트를 양극산화처리 하였고, 플랫폼 하방 2.5 mm에 식립 기준선을 표시하였다. rhBMP-2가 코팅되지 않은 임플란트 집단을 대조군으로, dip and dry 방법으로 rhBMP-2를 물리적 흡착시킨 집단을 BMP군, 3,4-dihydroxyphenylalanine(DOPA)-heparin을 이식하고 rhBMP-2를 화학적으로 고정시킨 집단을 Hep-BMP군으로 설정하였다. 각군별6개씩의 임플란트를 3마리의 비글견 양측 하악에 한쪽에 3개씩 총 18개를 치조정 상방으로 2.5 mm 노출시켜 식립하였다. 식립 직후와 4주, 8주에 식립부위의 방사선학적 검사가 시행되었고, 각 시기별, 각 군별 임플란트의 근원심 변연골의 수직적 재생량에 대한 평균값과 표준편차를 얻었다. Kruskal-Wallis test와 Mann-Whitney U test를 이용하여 4주, 8주에서 대조군과 실험군들의 차이를 비교 분석하고, 유의 수준5%에서 통계적으로 검정하였다. 결과:방사선학적 관찰 결과 임플란트 근원심 변연골 재생량(평균값 ${\pm}$ 표준편차)은 4주에 대조군은 $0.09{\pm}0.22mm$, BMP군은 $1.02{\pm}0.72mm$, Hep-BMP군은 $1.29{\pm}0.51mm$ 였으며, 8주에서는 각각 $0.11{\pm}1.26mm$, $1.11{\pm}0.58mm$, $1.59{\pm}0.79mm$였다. 두 실험군 모두 4주와 8주에서 대조군과 비교 시 유의한 수직적 골증대를 나타냈으나(P<.05), Hep-BMP군과BMP군의 비교에서는 유의한 변연골 재생량 차이를 보이지 않았다(P>.05). 결론: 골형성단백질을 물리적으로 흡착시키거나 서방출 위해 헤파린을 이용하여 화학적으로 고정시킨 양극산화 임플란트 표면은 모두 골 결손부에서 임플란트 주변골의 수직적 증대에 효과적이었다. 그러나 방사선학적 관찰의 한계 내에서 골형성단백질의 이 두가지 적용방법간에는 수직적 골증대량에 유의한 차이가 없었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
  2. Huh JB, Lee JY, Jeon YC, Shin SW, Ahn JS, Ryu JJ. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation. J Adv Prosthodont 2013;5:84-91. https://doi.org/10.4047/jap.2013.5.2.84
  3. Rammelt S, Heck C, Bernhardt R, Bierbaum S, Scharnweber D, Goebbels J, Ziegler J, Biewener A, Zwipp H. In vivo effects of coating loaded and unloaded Ti implants with collagen, chondroitin sulfate, and hydroxyapatite in the sheep tibia. J Orthop Res 2007;25:1052-61. https://doi.org/10.1002/jor.20403
  4. Hall J, Sorensen RG, Wozney JM, Wikesjo UM. Bone formation at rhBMP-2-coated titanium implants in the rat ectopic model. J Clin Periodontol 2007;34:444-51. https://doi.org/10.1111/j.1600-051X.2007.01064.x
  5. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2008;2:1-13. https://doi.org/10.1002/term.63
  6. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008;2:81-96. https://doi.org/10.1002/term.74
  7. Mehta M, Schmidt-Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural healing cascade in bone. Adv Drug Deliv Rev 2012;64:1257-76. https://doi.org/10.1016/j.addr.2012.05.006
  8. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, Alder M, Nummikoski P. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent 1997;17:11-25.
  9. Hanisch O, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjo UM. Bone formation and reosseointegration in peri-implantitis defects following surgical implantation of rhBMP-2. Int J Oral Maxillofac Implants 1997;12:604-10
  10. Howell TH, Fiorellini J, Jones A, Alder M, Nummikoski P, Lazaro M, Lilly L, Cochran D. A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for local alveolar ridge preservation or augmentation. Int J Periodontics Restorative Dent 1997;17:124-39.
  11. Sigurdsson TJ, Nygaard L, Tatakis DN, Fu E, Turek TJ, Jin L, Wozney JM, Wikesjo UM. Periodontal repair in dogs: evaluation of rhBMP-2 carriers. Int J Periodontics Restorative Dent 1996;16:524-37.
  12. Huh JB, Park CK, Kim SE, Shim KM, Choi KH, Kim SJ, Shim JS, Shin SW. Alveolar ridge augmentation using anodized implants coated with Escherichia coli-derived recombinant human bone morphogenetic protein 2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:42-9. https://doi.org/10.1016/j.tripleo.2010.09.063
  13. Stenport VF, Johansson C, Heo SJ, Aspenberg P, Albrektsson T. Titanium implants and BMP-7 in bone: an experimental model in the rabbit. J Mater Sci Mater Med 2003;14:247-54.
  14. Schliephake H, Aref A, Scharnweber D, Bierbaum S, Roessler S, Sewing A. Effect of immobilized bone morphogenic protein 2 coating of titanium implants on peri-implant bone formation. Clin Oral Implants Res 2005;16:563-9. https://doi.org/10.1111/j.1600-0501.2005.01143.x
  15. Stadlinger B, Pilling E, Huhle M, Mai R, Bierbaum S, Scharnweber D, Kuhlisch E, Loukota R, Eckelt U. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg 2008;37:54-9. https://doi.org/10.1016/j.ijom.2007.05.024
  16. Wikesjo UM, Qahash M, Thomson RC, Cook AD, Rohrer MD, Wozney JM, Hardwick WR. Space-providing expanded polytetrafluoroethylene devices define alveolar augmentation at dental implants induced by recombinant human bone morphogenetic protein 2 in an absorbable collagen sponge carrier. Clin Implant Dent Relat Res 2003;5:112-23. https://doi.org/10.1111/j.1708-8208.2003.tb00192.x
  17. Kim J, Park Y, Tae G, Lee KB, Hwang CM, Hwang SJ, Kim IS, Noh I, Sun K. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments. J Biomed Mater Res A 2009;88:967-75.
  18. Lee TC, Ho JT, Hung KS, Chen WF, Chung YH, Yang YL. Bone morphogenetic protein gene therapy using a fibrin scaffold for a rabbit spinal-fusion experiment. Neurosurgery 2006;58:373-80. https://doi.org/10.1227/01.NEU.0000199725.03186.F6
  19. Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim Biophys Acta 2012;1824:1374-81. https://doi.org/10.1016/j.bbapap.2012.07.002
  20. Sasisekharan R, Ernst S, Venkataraman G. On the regulation of fibroblast growth factor activity by heparin-like glycosaminoglycans. Angiogenesis 1997;1:45-54. https://doi.org/10.1023/A:1018318914258
  21. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S. Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 2003;65:489-97.
  22. Huh JB, Kim SE, Song SK, Yun MJ, Shim JS, Lee JY, Shin SW. The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function. J Adv Prosthodont 2011;3:145-51. https://doi.org/10.4047/jap.2011.3.3.145
  23. Kim SE, Song SH, Yun YP, Choi BJ, Kwon IK, Bae MS, Moon HJ, Kwon YD. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials 2011;32:366-73. https://doi.org/10.1016/j.biomaterials.2010.09.008
  24. Ishibe T, Goto T, Kodama T, Miyazaki T, Kobayashi S, Takahashi T. Bone formation on apatite-coated titanium with incorporated BMP-2/heparin in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:867-75. https://doi.org/10.1016/j.tripleo.2009.06.039
  25. Hong S, Kim KY, Wook HJ, Park SY, Lee KD, Lee DY, Lee H. Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification. Nanomedicine (Lond) 2011;6:793-801. https://doi.org/10.2217/nnm.11.76
  26. Leknes KN, Yang J, Qahash M, Polimeni G, Susin C, Wikesjo UM. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: radiographic observations. Clin Oral Implants Res 2008;19:1027-33. https://doi.org/10.1111/j.1600-0501.2008.01567.x
  27. Wikesjo UM, Qahash M, Polimeni G, Susin C, Shanaman RH, Rohrer MD, Wozney JM, Hall J. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-2: histologic observations. J Clin Periodontol 2008;35:1001-10. https://doi.org/10.1111/j.1600-051X.2008.01321.x
  28. Huh JB, Kim SE, Kim HE, Kang SS, Choi KH, Jeong CM, Lee JY, Shin SW. Effects of anodized implants coated with Escherichia coli-derived rhBMP-2 in beagle dogs. Int J Oral Maxillofac Surg 2012;41:1577-84. https://doi.org/10.1016/j.ijom.2012.04.005
  29. Huh JB, Yun MJ, Jeong CM, Shin SW, Jeon YC. Combined effects of rhBMP-2 and rhVEGF coated onto implants on osseointegration: pilot study. J Korean Acad Prosthodont 2013;51:82-9. https://doi.org/10.4047/jkap.2013.51.2.82
  30. Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB, Triplett RG. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation. J Oral Maxillofac Surg 2005;63:1693-707. https://doi.org/10.1016/j.joms.2005.08.018
  31. Zhoua D, Ito Y. Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering. RSC Adv 2013;3:11095-106. https://doi.org/10.1039/c3ra23313h
  32. Lee H, Scherer NF, Messersmith PB. Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA 2006;103:12999-3003. https://doi.org/10.1073/pnas.0605552103
  33. Fan X, Lin L, Dalsin JL, Messersmith PB. Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 2005;127:15843-7. https://doi.org/10.1021/ja0532638
  34. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318:426-30. https://doi.org/10.1126/science.1147241
  35. Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface functionalization of $TiO_2$ nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 2011;12:1097-105. https://doi.org/10.1021/bm1014365
  36. Lee DW, Yun YP, Park K, Kim SE. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone 2012;50:974-82. https://doi.org/10.1016/j.bone.2012.01.007
  37. Kempen DH, Lu L, Hefferan TE, Creemers LB, Maran A, Classic KL, Dhert WJ, Yaszemski MJ. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials 2008;29:3245-52. https://doi.org/10.1016/j.biomaterials.2008.04.031
  38. Kim SE, Yun YP, Lee JY, Shim JS, Park K, Huh JB. Co-delivery of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein (BMP-2) coated onto heparinized titanium for improving osteoblast function and osteointegration. J Tissue Eng Regen Med 2013 Jan 3.
  39. Takada T, Katagiri T, Ifuku M, Morimura N, Kobayashi M, Hasegawa K, Ogamo A, Kamijo R. Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins. J Biol Chem 2003;278:43229-35. https://doi.org/10.1074/jbc.M300937200
  40. Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, Chung UI, Koike T, Takaoka K, Kamijo R. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem 2006;281:23246-53. https://doi.org/10.1074/jbc.M511039200
  41. Koo KH, Lee JM, Ahn JM, Kim BS, La WG, Kim CS, Im GI. Controlled delivery of low-dose bone morphogenetic protein-2 using heparin-conjugated fibrin in the posterolateral lumbar fusion of rabbits. Artif Organs 2013;37:487-94. https://doi.org/10.1111/j.1525-1594.2012.01578.x
  42. Rosen V. BMP and BMP inhibitors in bone. Ann N Y Acad Sci 2006;1068:19-25. https://doi.org/10.1196/annals.1346.005
  43. Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, Toyama Y, Yabe Y, Kumegawa M, Hakeda Y. Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 2000;27:479-86. https://doi.org/10.1016/S8756-3282(00)00358-6

Cited by

  1. Effects of Immobilizations of rhBMP-2 and/or rhPDGF-BB on Titanium Implant Surfaces on Osseointegration and Bone Regeneration vol.8, pp.1, 2017, https://doi.org/10.3390/coatings8010017
  2. -TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/2876135
  3. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/459393