DOI QR코드

DOI QR Code

Distribution of Ectomycorrhizal Fruit Bodies According to Forest Fire Area

산불발생에 따른 외생균근성 버섯의 분포

  • Kim, Hong-Jin (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University) ;
  • Chung, Jin-Chul (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University) ;
  • Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University) ;
  • Jang, Kyu-Kwan (Botanical Garden, Wonkwang University)
  • 김홍진 (원광대학교 생명자원과학대학 환경조경학과) ;
  • 정진철 (원광대학교 생명자원과학대학 환경조경학과) ;
  • 장석기 (원광대학교 생명자원과학대학 환경조경학과) ;
  • 장규관 (원광대학교 부속 자연식물원)
  • Received : 2013.04.23
  • Accepted : 2013.06.13
  • Published : 2013.06.30

Abstract

This study was conducted to investigate the diversity of ectomycorrhizal fungi by surveying sites from June 2010 to October 2011. The obtained results from investigation were as follows. The total of 2 Kingdom 3 Phylum 6 classes 15 orders 34 families 59 genera and 107 species including saprophytic and ectomycorrhizal fungi was investigated. A total of 10 families 17 genera 49 species (801 ea.) of ectomycorrhizal mushroom was investigated. The mushrooms are classified into 28 families 51 genera and 99 species in Basidiomycota, 5 families 7 genera and 7 species in Ascomycota and 1 families 1 genera and 1 species in Amoebozoa. Dorminant species were Amanitaceae (14 species) followed by Russulaceae (12 species) and Boletaceae (11 species). The populaion ectomycorrhizal mushroom was highest in sites 1 and 2, and sites 4 and 5 occurrence rarely. The mushroom occurrence of ectomycorrhizal fungi was closely related to climatic conditions such as high air temperature and lots of rainfall from July to August. The environment factors which have a favorable influence of mushroom occurrence were soil pH, organic matter content of soil and air temperature of climatic environment.

2010년 6월부터 2011년 10월까지 고등균류를 조사한 결과, 총 2계 3문 6강 15목 34과 59속 107종이 동정되었으며, 담자균문은 28과 51속 99종, 자낭균문은 5과 7속 7종 및 아메바문은 1과 1속 1종인 것으로 조사되었다. 외생균근성 버섯을 조사한 결과 총 10과 17속 49종 총 801개체가 조사되었으며 이 중 애기꾀꼬리버섯이 198개체로 가장 많이 발생되었고 꾀꼬리버섯 66개체, 색시졸각버섯 53개체 순이었다. 종 분포가 높은 균류는 광대버섯과가 14종으로 가장 많이 나타났으며, 그물버섯과 12종, 무당버섯과 11종 순으로 조사되었다. 조사시기별 분포에서는 7월과 8월에 가장 다양한 외생균근성 버섯이 발생되었는데 이는 높은 온도 및 강수량이 많은 시기와 밀접한 관계가 있는 것으로 나타났다. 조사구별 분포에서는 조사구 I인 소나무 군락 (8과 13속 30종)과 II인 참나무 군락 (8과 12속 30종)에서 가장 높았고, 조사구 IV (1과 1속 1종)와 V의 곰솔 식재지 에서는 발생하지 않았다. 외생균근성 버섯 발생에 영향을 주는 기후환경 요인으로는 대기온도 (평균온도, 최저온도, 최고온도)에서, 토양환경 요인으로는 토양 산도와 유기물함량에서 밀접한 관계가 있는 것으로 나타났다.

Keywords

References

  1. Anderson, I.C., B.A. Bastias, D.R. Genney, P.I. Parkin and J.W.G. Cairney. 2007. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycological Research 111: 482-486. https://doi.org/10.1016/j.mycres.2007.02.006
  2. Avis, P.J., D.J. McLaughlin, B.C. Dentinger and P.B. Reich. 2003. Long-term increase in nitrogen supply alters aboveand below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytologist 160: 239-253. https://doi.org/10.1046/j.1469-8137.2003.00865.x
  3. Diaz-Ravina, M., E. Baath, A. Martin, T. Carballas. 2006. Microbial community structure in forest soils treated with a fire retardant. Biology and Fertility of Soils 42: 465-471. https://doi.org/10.1007/s00374-005-0036-7
  4. Diedhiou, A.G., J.-L. Dupouey, M. Buee, E. Dambrine, L. Laüt and J. Garbaye. 2010. The functional structure of ectomycorrhizal communities in an oak forest in central France witnesses ancient Gallo-Roman farming practices. Soil Biology and Biochemistry 42: 860-862. https://doi.org/10.1016/j.soilbio.2010.01.011
  5. Donk, A. 1964. A concepts of the families of Aphyllophorales, Rijksherharium, Leiden. Persoonia 3: 199-324.
  6. Erland, S. and A.F.S. Taylor. 2002. Diversity of ectomycorrhizal fungal communities in relation to the abiotic environment, p. 163-200. In: Mycorrhizal Ecology (van der Heijden, M. and I. Sanders, eds.). Berlin, Heidelberg: MGA Springer-Verlag Berlin Heidelberg.
  7. Eveling, D.W., R.N. Wilson, E.S. Gillespie and A. Bataille. 1990. Environmental effects on basidioma counts over fourteen years in a forest area. Mycological Research 94: 998-1002. https://doi.org/10.1016/S0953-7562(09)81320-8
  8. Hur, T.C. and S.K. Jang. 2011. Distribution of Higher Fungi in JuWangSan National Park. Journal of Korean Institute of Forest Recreation 5(2): 15-20.
  9. Ishida, T.A., K. Nara and T. Hogetsu. 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer broadleaf forests. New Phytologist 174: 430-440. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  10. Jeong, J.H., C.S. Kim, K.S. Goo, C.H. Lee, H.G. Won and J.G. Byun. 2003. Physico-chemical Properties of Korean forest soils by parent rocks. Journal of Korean Forestry Society 92(3): 254-262.
  11. Jeong, J.H., K.S. Koo, C.H. Lee and C.S. Kim. 2002. Physicochemical Properties of Korean forest soils by regions. Journal of Korean Forestry Society 91(6): 694-700.
  12. Kernaghan, G. 2005. Mycorrhizal diversity: cause and effect?. Pedobiologia 49: 511-520. https://doi.org/10.1016/j.pedobi.2005.05.007
  13. Kim, N.K. 2006. Studies on the flora of soil microorganisms and higher fungi by forest types in the Odaesan National Park. KangWon National University. p. 81.
  14. Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy and D.J. Read. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016-1045. https://doi.org/10.1139/b04-060
  15. Molina, R., H.B. Massicotte and J.M. Trappe. 1992. Specificity phenomena in mycorrhizal symbioses: communityecological consequences and practical implications, p. 357-422. In: Mycorrhizal Functioning: An Integrative plant-fungal process (Allen, M.F., ed.). Chapman and Hall, London.
  16. Mosca, E., L. Montecchio, L. Scattolin and J. Garbaye. 2007a. Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biology and Biochemistry 39: 2897-2904. https://doi.org/10.1016/j.soilbio.2007.05.033
  17. Mosca, E., L. Montecchio, L. Sella and J. Garbaye. 2007b. Short-term effect of removing tree competition on the ectomycorrhizal status of a declinin pedunculate oak forest (Quercus robur L.). Forest Ecology and Management 244: 129-140. https://doi.org/10.1016/j.foreco.2007.04.019
  18. Natarajan, K., G. Senthilarasu, V. Kumaresan and T. Rivière. 2005. Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Current Science 88(12): 1893-1895.
  19. Park, Y.-J. 2003. Studies on the Monitor ing of Fungal Flora in Chiaksan National Park. Kangwon National University. p.150.
  20. Rumberger, M.D., B. Münzenberger, O. Bens, F. Ehrig, P. Lentzsch and R.F. Hütt. 2004. Changes in diversity and storage function of ectomycorrhiza and soil organo-profile dynamics after introduction of beech into Scots pine forests. Plant and Soil 264: 111-126. https://doi.org/10.1023/B:PLSO.0000047793.14857.4f
  21. Scattolin, L., L. Montecchio and R. Agerer. 2008. The ectomycorrhizal community structure in high mountain Norway spruce stands. Trees 22: 13-22. https://doi.org/10.1007/s00468-007-0164-9
  22. Simard, S.W., D. Durall and M. Jones. 2002. Carbon and nutrient fluxes within and between mycorrhizal plants, p. 33-74. In: Mycorrhizal ecology [ecological studies vol. 157] (van der Heijden, M.G.A. and I.R. Sanders, eds.). Springer-Verlag, Berlin.
  23. Singer, R. 1986. The Agaricales in Modern Taxonomy, 4th ed. Koeltz Scientific Books, Koenigstein. p. 912.
  24. Smith, S.E. and D.J. Read. 2008. Mycorrhizal Symbiosis 3 Edition, Academic Press, London. p. 815.
  25. Taylor, A.F.S., F. Martin and D.J. Read. 2000. Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies [L.] Karst.) and Beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European Forest Ecosystems. Ecological Studies 142: 343-365. https://doi.org/10.1007/978-3-642-57219-7_16
  26. Twieg, B.D., D.M. Durall and S.W. Simard. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytologist 176: 437-447. https://doi.org/10.1111/j.1469-8137.2007.02173.x
  27. Van der Heijden, M.G.A., R.D. Bardgett and N.M. Van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11: 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  28. Watling, R. 1995. Assessment of fungal diversity: macromycetes, the problems. Canadian Journal of Botany 73: 15-24. https://doi.org/10.1139/b95-220