DOI QR코드

DOI QR Code

Moisture Transport Observed by Water Vapor Isotopes in the Vicinity of Coastal Area, Incheon, Korea

수증기안정동위원소를 이용한 해안지역 수분의 이동경로에 관한 연구

  • 이정훈 (이화여자대학교 과학교육과) ;
  • 최희진 (극지연구소 극지지구시스템연구부) ;
  • 오진만 (KNJ 엔지니어링(주)) ;
  • 나운성 (극지연구소 극지지구시스템연구부) ;
  • 곽호제 (인하대학교 해양학과) ;
  • 허순도 (극지연구소 극지지구시스템연구부)
  • Received : 2013.04.10
  • Accepted : 2013.08.18
  • Published : 2013.08.28

Abstract

Water vapor isotopes can be excellent tools for understanding complex mechanisms in the water cycle and atmospheric hydrological cycle and they can be applied to various fields of paleoclimatology, atmospheric science, hydrogeology, oceanography, and ecohydrology. Thus, studies of global or local transport of water vapor may be able to provide a very useful clue to better understand the movements of water and energy in the atmosphere, hydrosphere and biosphere. In this study, the isotopic compositions of water vapor have been observed for moisture transport during the passage of Typhoon Bolaven at Korea Polar Research Institute (KOPRI), Incheon, in the western part of Korea, from August 27 to August 29, 2012. In the clear sky, the isotopic compositions of water vapor at KOPRI exhibited relatively higher isotopic ratios, which were near isotopic equilibrium with sea surface water (${\delta}^{18}O$=-14‰). On the other hand, a largely depleted isotopic ratios in surface water vapor were observed in association with the passage of Typhoon Bolaven (approximately 10‰ depleted compared to the clear sky). The fact that the isotopic minima in water vapor are encountered during the onset period of the Typhoon Bolaven with increases of relative humidity, which is consistent with, so called, "the amount effect".

물의 순환의 복잡한 기작을 이해하는 데 수증기동위원소는 중요한 단서를 제공할 수 있으며 지구과학의 다양한 영역(고기후학, 수리지질학, 대기학, 해양학 및 생태학)에 적용될 수 있다. 수분의 전지구적 또는 지역적 이동에 대한 연구는 물의 순환 및 대기에서의 에너지이동을 좀 더 잘 이해하는 데 도움을 줄 것이다. 본 연구에서는 해안근처에서의 수분의 이동을 파악하기 위해서 태풍 볼라벤이 한반도를 통과하는 기간동안(2012년 8월 27일부터 8월 29일까지) 수증기의 안정동위원소를 극지연구소에 설치된 동위원소분석기를 이용하여 측정하였다. 수분동위원소의 두 동위원소의 선형관계식($D=7.8x^{18}O+10.1$)으로부터 해양 기원의 수증기가 증발에 의해 이동되어 측정되었음을 알 수 있었다. 날씨가 맑을 때는 해양으로부터 증발되어 다른 물리적인 변동없이 직접 이동된 수증기의 동위원소 조성(산소동위원소, ${\delta}^{18}O$=-14‰)을 보여 주었으며, 태풍이 통과하면서 수분동위원소의 값은 10‰ 정도 낮은 값을 보였다. 태풍의 통과로 인해 상대습도는 증가하였으며 수분동위원소값은 감소하는 소위 "우량효과(amount effect)"를 보여주었다.

Keywords

References

  1. Kim, K.-H. (2010) Isotope Geochemistry, Sigmapress.
  2. Lee, K.-S., Koh, D.-C., Lee, D. and Park, W.-B. (2002) The temporal and spatial distribution of stable isotope composition of precipitation in Jeju Island: application to groundwater recharge study. Journal of Geological Society of Korea, v.38, p.151-161.
  3. Araguas-Araguas, L., Froehlich, K. and Rozanski, K. (1998) Stable isotope composition of precipitation over southeast Asia. Journal of Geophysical Research, v.103, p.28,721-28,742. https://doi.org/10.1029/98JD02582
  4. Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, v.16, p.436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
  5. Fudeyasu, H., Ichiyanagi, K., Sugimoto, A., Yoshimura, K., Ueta, A., Yamanaka, M.D., and Ozawa, K. (2008) Isotope ratios of precipitation and water vapor observed in Typhoon Shanshan. Journal of Geophysical Research, v.113, D12113, doi:10.1029/2007JD009313.
  6. Gupta, P., Noone, D., Galewsky, J., Sweeny, C. and Vaughn, B.H. (2009) Demonstration of high precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using WSCRDS technology. Rapid Communications in Massspectrometry, v.23, p.2534-2542. https://doi.org/10.1002/rcm.4100
  7. Iannone, R.Q., Romanini, D., Cattani, O., Meijer, H.A.J. and Kerstel, E.R.Th. (2010) Water isotope ratio ($^{2}H$ and $^{18}O$) measurements in atmospheric moisture using an optical feedback cavity enhanced absorption laser spectrometer. Journal of Geophysical Research, v.115, D10111, doi:10.1029/2009JD012895.
  8. Jo, K.N., Woo, K.S., Hong, G.H., Kim, S.H. and Suk, B.C. (2010) Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): An example from Seopdong Cave, Republic of Korea. Earth and Planetary Science Letters, v.295, p.441-450. https://doi.org/10.1016/j.epsl.2010.04.024
  9. Lawrence, J.R. and Gedzelman, S.D. (1996) Low stable isotope ratio of tropical cyclone rains. Geophysical Research Letters, v.23, p.527-530. https://doi.org/10.1029/96GL00425
  10. Lawrence, J.R., Gedzelman, S.D., Zhang, X. and Arnold, R. (1995) Stable isotope ratios of rain and vapor in 1995 hurricanes. Journal of Geophysical Research, v.103, p.11381-11400.
  11. Lee, J.-E. and Fung, I. (2008) ''Amount effect'' of water isotopes and quantitative analysis of post-condensation processes. Hydrological Processes, v.23, p.1-8.
  12. Lee, J., et al. (2011) Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmospheric Chemistry and Physics, v.11, p.741-752. https://doi.org/10.5194/acp-11-741-2011
  13. Lee, J., Feng, X., Faiia, A.M., Posmentier, E.S., Kirchner, J.W., Osterhuber, R. and Taylor, S. (2010) Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology, v.270, p.126-134. https://doi.org/10.1016/j.chemgeo.2009.11.011
  14. Lee, J., Worden, J., Koh, D.C., Yoshimura, K. and Lee, J.E. (2013) A seasonality of ${\delta}D$ of water vapor (850- 500 hPa) observed from space over Jeju Island, Korea. Geosciences Journal, v.17, p.87-95. https://doi.org/10.1007/s12303-013-0003-5
  15. Lee, K.S., Grundstein, A.J., Wenner, D.B., Choi, M.S., Woo, N.C. and Lee, D.H. (2003) Climatic controls on the stable isotopic composition of precipitation in Northeast Asia. Climate Research, v.23, p.137-148. https://doi.org/10.3354/cr023137
  16. Moyer, E.J., Irion, F.W., Yung Y.L. and Gunson, M.R. (1996) ATMOS stratospheric deuterated water and implications for troposphere-stratosphere transport. Geophysical Research Letters, v.17, p.2385-2388.
  17. Risi, C., Bony, S. and Vimeux, F. (2008) Influence of convective processes on the isotopic composition (${\delta}^{18}O$ and ${\delta}D$) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. Journal of Geophysical Research, v. 113, D19306, doi:10.1029/2008JD009943.
  18. Worden, J., et al. (2011) Estimate of bias in Aura TES HDO/$H_{2}O$ profiles from comparison of TES and in situ HDO/$H_{2}O$ measurements at the Mauna Loa observatory. Atmospheric Chemistry and Physics, v.11, p.4491-4503. https://doi.org/10.5194/acp-11-4491-2011

Cited by

  1. A High-resolution Study of Isotopic Compositions of Precipitation vol.48, pp.5, 2015, https://doi.org/10.9719/EEG.2015.48.5.371
  2. A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment vol.37, pp.4, 2015, https://doi.org/10.4217/OPR.2015.37.4.327
  3. Influences of Fractionation of Stable Isotopic Composition of Rain and Snowmelt on Isotopic Hydrograph Separation vol.35, pp.2, 2014, https://doi.org/10.5467/JKESS.2014.35.2.97
  4. A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences vol.37, pp.2, 2015, https://doi.org/10.4217/OPR.2015.37.2.141
  5. A Review on the Application of Stable Water Vapor Isotope Data to the Water Cycle Interpretation vol.20, pp.3, 2015, https://doi.org/10.7857/JSGE.2015.20.3.034