DOI QR코드

DOI QR Code

Time Dependent Degradation of Cell in Dye-Sensitized Solar Cell

염료 감응형 태양전지에서 시간의 경과에 따른 셀의 특성 저하 연구

  • Seo, Hyun Woo (Department of Materials science and Engineering, Hongik University) ;
  • Kim, Ki Soo (Department of Materials science and Engineering, Hongik University) ;
  • Beak, Hyun Duk (Department of Materials science and Engineering, Hongik University) ;
  • Kim, Dong Min (Department of Materials science and Engineering, Hongik University)
  • Received : 2013.08.12
  • Accepted : 2013.10.31
  • Published : 2013.10.31

Abstract

We report on the time dependent degradation of cell in dye-sensitized solar cells (DSSC). The photovoltaic performance of DSSC over a period of time was investigated in liquid electrolyte based on triiodide/iodide during six days. It was found that the short circuit current density ($j_{sc}$) of the cell dropped from 9.9 to $7mA/cm^2$ while efficiency (${\eta}$) of the cell decreased from 4.4 to 3.3%. The parameters corresponding to fundamental electronic and ionic processes in a working DSSC are determined from the electrochemical impedance spectrascopy (EIS) at open-circuit potential ($V_{oc}$). EIS study of the DSSC in the this work showed that the electron life time ${\tau}_r$ and chemical capacitance $C_{\mu}$ decreased significantly after six days. It was correlated the $j_{sc}$ and efficiency decreased after six days.

Keywords

References

  1. T.B. Johansson, H. Kelly, A.K.N. Reddy,R. Williams (eds) "Renewable energy: sources for fuels and electricity", Washington, D.C.: Island Press, 1993. p. 1.
  2. G. Jose, "Ethanol for a Sustainable Energy Future", Science Vol. 315, 2007, p. 808. https://doi.org/10.1126/science.1137013
  3. A.J. Appleby, F.R. Foulkes, "Fuel Cell Handbook", Van Nostrand Reinhold, New York (1989).
  4. V. Noto, E. Negro, "Pt-Fe and Pt-Ni carbon nitride-based "Core-Shell" ORR electrocatalysts for application in Polymer Electrolyte Membrane Fuel Cells", Fuel Cells Vol. 10, 2010, p. 234. https://doi.org/10.1002/fuce.200900129
  5. H. Cachet, A. Gamand, G. Campet, B Jousseaume, T. Toupance, "Tin dioxide thin films prepared from a new alkoxyfluorotin complex including a covalent Sn F bond", Thin Solid Films Vol. 388, 2001, p. 41. https://doi.org/10.1016/S0040-6090(01)00838-0
  6. M. Gratzel, "Photoelectrochmical cells", Nature Vol. 414, 2001, p. 338. https://doi.org/10.1038/35104607
  7. L.L. Kazmerski, "Solar photovoltaics R&D at the tipping point: A 2005 technology overview", J. Electron Spectrosc. Relat. Phenom. Vol. 150, 2006, p. 105. https://doi.org/10.1016/j.elspec.2005.09.004
  8. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, "Solar cell efficiency tables(version 39)", Prog. Photovoltaics Vol. 20, 2012, p. 12. https://doi.org/10.1002/pip.2163
  9. M.A. Green, "Solar cells: Operating principles, technology, and system applications", Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982, p. 288.
  10. J.H. Lee, D.G. Lim, J.S. Lee, "Principles of Solar Cells", Hong Reunggwahakchulpansa, 2005.
  11. B. O' Regan, M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films", Nature Vol. 353, 1991, p. 737. https://doi.org/10.1038/353737a0
  12. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, "Nanocrystalline Titanium Oxide Electrodes for Photovltaic Applications", J. Am. Ceram. Soc. Vol. 80, 1997, p. 3157.
  13. M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, "A 4.2% efficient flexible dyesensitized $TiO_2$ solar cells using stainless steel substrate", Sol. Energy Mater. Sol. Cells Vol. 90, 2006, p. 574. https://doi.org/10.1016/j.solmat.2005.04.025
  14. A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, Md.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M Zakeeruddin, M. Gratzel, "Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency", Science Vol. 334, 2011, p. 629. https://doi.org/10.1126/science.1209688
  15. H.S. Park, S.Y. Kwon, W. Yang, "DSSCs Efficiency by Thickness of $TiO_2$ Photoelectrode and Thickness Differences Between Two Substrates", J. KIEEME Vol. 25, 2012, p. 537. https://doi.org/10.4313/JKEM.2012.25.7.537
  16. A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, "Long-term Stability of Dye-Sensitized Solar Cells", Prog. Photovo ltaics Vol. 9, 2001, p. 425. https://doi.org/10.1002/pip.397
  17. E. Leonardi, S. Penna, T.M. Brown, A.D. Carlo, A. Reale, "Stability of dye-sensitized solar cells under light soaking test", J. Non-Cryst. Solids Vol. 356, 2010, p. 2049. https://doi.org/10.1016/j.jnoncrysol.2010.05.072
  18. S.J. Lue, P.W. Lo, L.Y. Hung, Y.L. Tung, "Application of micro-porous polycarbonate membranes in dye-sensitized solar cells: Cell performance and long-term stability", J. Power Sources Vol. 195, 2010, p. 7677. https://doi.org/10.1016/j.jpowsour.2010.05.034
  19. R. Harikisun, H. Desilvestro, "Long-term stability of dye solar cells", Sol. Energy Vol. 85, 2011, p. 1179. https://doi.org/10.1016/j.solener.2010.10.016
  20. C. He, L. Zhao, Z. Zheng, F. Lu, "Determination of Electron Diffusion Coefficient and Lifetime in Dye-Sensitized Solar Cells by Electrochemical Impedance Spectroscopy at High Fermi Level Conditions", J. Phys. Chem. C Vol. 112, 2008, p. 18730. https://doi.org/10.1021/jp8085733