DOI QR코드

DOI QR Code

A Study on Effect of Thermal Decomposition Products of Coal on Anodic Reactions in Direct Carbon Fuel Cell

석탄 열분해 생성물이 직접탄소연료전지에서 애노드 반응에 미치는 영향에 대한 연구

  • 이영훈 (부산대학교 기계공학과 대학원) ;
  • 엄성용 (부산대학교 기계공학과 대학원) ;
  • 안성율 (일본 전력중앙연구소) ;
  • 최경민 (부산대학교 기계공학부) ;
  • 김덕줄 (부산대학교 기계공학부)
  • Received : 2013.08.14
  • Accepted : 2013.10.31
  • Published : 2013.10.31

Abstract

Effect of inherent volatile matters in fuels on electrochemical reactions of anode was investigated for a single direct carbon fuel cell (DCFC). Raw coals used as power source in the DCFC release light gases into the atmosphere under the operating temperature of DCFC ($700^{\circ}C$) by thermal decomposition and only char remained. These exhausted gases change the gas composition around anode and affect the electrochemical oxidation reaction of system. To investigate the effect of produced gases, comparative study was conducted between Indonesian sub-bituminous coal and its char obtained through thermal treatment, carbonizing. Maximum power density of raw coal ($52mW/cm^2$) was appeared higher than that of char ($37mW/cm^2$) because the gases produced from the raw coal during thermal decomposition gave additional positive results to electrochemical reaction of the system. The produced gases from coals were analyzed using TGA and FT-IR. The influence of volatile matters on anodic electrolyteelectrode interface was observed by the equivalent circuit induced from fitting of impedance spectroscopy data.

Keywords

References

  1. T.A. Edison, US Patent No. 460, 1222 (1891).
  2. W.W. Jaques, US Patent No. 555, 511 (1896).
  3. S. Giddey, S.P.S. Badwal, A. Kulkarni, and C. Munnings, "A comprehensive review of direct carbon fuel cell technology", Progress in Energy and Combustion Science, Vol. 38, 2012, p. 360. https://doi.org/10.1016/j.pecs.2012.01.003
  4. D. Cao, Y. Sun, and G. Wang, "Direct carbon fuel cell: Fundamentals and recent developments", Journal of Power Source, Vol. 167, 2007, p. 250. https://doi.org/10.1016/j.jpowsour.2007.02.034
  5. S. Y. Ahn, Y. H. Rhie, S. Y. Eom, Y. M. Sung, C. E. Moon, K. J. Kang, G. M. Choi, D. J. Kim, "An experimental study on the characteristics of electrochemical reactions of RDF/RPF in the direct carbon fuel cell", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 5, 2012, pp. 513-520. https://doi.org/10.7316/KHNES.2012.23.5.513
  6. S. Y. Ahn, S. Y. Eom, Y. H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, D. J. Kim, "Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system", Applied Energy, Vol. 105, 2013, pp. 207-216. https://doi.org/10.1016/j.apenergy.2013.01.023
  7. S. Y. Ahn, S. Y. Eom, Y. H. Rhie, Y. M. Sung, C. E. Moon, G. M. Choi, D. J. Kim, "Appl1ication of refuse fuels in a direct carbon fuel cell system", Energy, Vol. 51, 2013, pp. 447-456. https://doi.org/10.1016/j.energy.2012.12.025
  8. J. F. Cooper, J. R. Selman, "Analysis of the carbon anode in direct carbon conversion fuel cells", International Journal of Hydrogen Energy, Vol. 37, Issue 24, 2012, pp. 19319-19328. https://doi.org/10.1016/j.ijhydene.2012.03.095
  9. X. Li, Z. Zhu, R. De Marco, J. Bradley, A. Dicks, "Evaluation of raw coals as fuels for direct carbon fuel cells", Journal of Power Sources, Vol. 195, Issue 13, 2010, pp. 4051-4058. https://doi.org/10.1016/j.jpowsour.2010.01.048
  10. A. Elleuch, A. Boussetta, and K. Halouani, "Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing Direct Carbon Fuel Cell", Journal of Electroanalytical Chemistry, Vol. 668, 2012, p. 99. https://doi.org/10.1016/j.jelechem.2012.01.010
  11. C. Li, Y. Shi, N. Cai, "Performance improvement of direct carbon fuel cell by introducing catalytic gasification process", Journal of Power Sources, Vol. 195, Issue 15, 2010, pp. 4660-4666. https://doi.org/10.1016/j.jpowsour.2010.01.083
  12. W.H.A. Peelen, K. Hemmes, J.H.W. de Wit, "Comparative study on the oxygen dissolution behaviour in 62/38 mol% Li/K and 52/48 mol% Li/Na carbonate", Journal of Electroanalytical Chemistry, Vol. 470, Issue 1, 1999, pp. 39-45 https://doi.org/10.1016/S0022-0728(99)00209-0
  13. E. Barsoukov, J. R. Macdonald, "Impedance spectroscopy theory, experiment, and applications", John Wiley & Sons, Inc., Publication, 2005.
  14. Y. Tang, J. Liu, "Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells", International Journal of Hydrogen Energy, Vol. 35, Issue 20, 2010, pp. 11188-11193. https://doi.org/10.1016/j.ijhydene.2010.07.068
  15. A. C. Chien, S. S.C. Chuang, "Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels", Journal of Power Sources, Vol. 196, Issue 10, 2011, pp. 4719-4723. https://doi.org/10.1016/j.jpowsour.2011.01.033
  16. E. P. Murray, T. Tsai, S. A. Barnett, "A directmethane fuel cell with a ceria-based anode", Nature, Vol. 400, pp. 649-651.
  17. T. Siengchum, F. Guzman, S. S.C. Chuang, "Analysis of gas products from direct utilization of carbon in a solid oxide fuel cell", Journal of Power Sources, Vol. 213, 2012, pp. 375-381. https://doi.org/10.1016/j.jpowsour.2012.04.020
  18. D.G. Vutetakis, "Electrochemical oxidation of carbonaceous materials dispersed in molten carbonate", Ph.D Thesis(Ohio State Univ., Columbus, USA), 1985
  19. M. Mohamedi, Y. Hisamitsu, Y. Ono, T. Itoh, I. Uchida, "Effect of molten carbonate composition on oxygen reduction under pressurized conditions: cyclic voltammetry and equivalent circuit analysis", Journal of Applied Electrochemistry, Vol. 30, 2000, pp. 1397-1404 https://doi.org/10.1023/A:1026539032082
  20. V. M. Huang, V. Vivier, M. E. Orazem, N. Pebere, B. Tribollet, "The Apparent Constant-Phase-Element Behavior of an Ideally Polarized Blocking Electrode - A Global and Local Impedance Analysis", J. Electrochem. Soc., Vol. 154, issue 2, 2007, pp. 81-88.
  21. P. Simon, A. Burke, "Nanostructured Carbons: Double-Layer Capacitance and More", The Electrochemical Society Interface, Vol. 17, 2008, pp. 38-43.

Cited by

  1. Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment vol.40, pp.11, 2016, https://doi.org/10.3795/KSME-B.2016.40.11.697