DOI QR코드

DOI QR Code

깊이정보를 이용한 케스케이드 방식의 실시간 손 영역 검출

Real-time Hand Region Detection based on Cascade using Depth Information

  • 투고 : 2013.05.28
  • 심사 : 2013.07.06
  • 발행 : 2013.10.31

초록

본 논문에서는 깊이정보를 이용하여 케스케이드 방식에 기반한 실시간 손 영역 검출 방법을 제안한다. 실험 환경 조명 조건의 변화로부터 빠르고 안정적으로 손 영역을 검출하기 위해 깊이정보만을 이용한 특징을 제안하며, 부스팅과 케스케이드 방법을 이용한 분류기를 통해 손 영역 검출 방법을 제안한다. 먼저, 깊이정보만을 이용한 특징을 추출하기 위해 입력영상의 중심 깊이 값과 분할된 블록의 평균 깊이 값의 차이를 계산하고, 모든 크기의 손 영역 검출을 위해 중심 깊이 값과 2차 선형 모델을 이용하여 손 영역의 크기를 예측한다. 그리고 손 영역으로부터의 특징 추출을 통한 학습 및 인식을 위해 케스케이드 방식을 적용한다. 본 논문에서 제안한 분류기는 정확도를 유지하고 속도를 향상시키기 위하여 각 스테이지를 한 개의 약분류기로 구성하고 검출율을 만족하면서 오류율이 가장 낮은 임계값을 구하여 과적합 학습을 수행한다. 학습된 분류기를 이용하여 손 영역을 분류하고, 병합단계를 통해 최종 손 영역을 검출한다. 마지막으로 성능 검증을 위해 기존의 다양한 아다부스트와 정량적, 정성적 비교 분석을 통해 제안하는 손 영역 검출 알고리즘의 효율성을 입증한다.

This paper proposes a method of using depth information to detect the hand region in real-time based on the cascade method. In order to ensure stable and speedy detection of the hand region even under conditions of lighting changes in the test environment, this study uses only features based on depth information, and proposes a method of detecting the hand region by means of a classifier that uses boosting and cascading methods. First, in order to extract features using only depth information, we calculate the difference between the depth value at the center of the input image and the average of depth value within the segmented block, and to ensure that hand regions of all sizes will be detected, we use the central depth value and the second order linear model to predict the size of the hand region. The cascade method is applied to implement training and recognition by extracting features from the hand region. The classifier proposed in this paper maintains accuracy and enhances speed by composing each stage into a single weak classifier and obtaining the threshold value that satisfies the detection rate while exhibiting the lowest error rate to perform over-fitting training. The trained classifier is used to classify the hand region, and detects the final hand region in the final merger stage. Lastly, to verify performance, we perform quantitative and qualitative comparative analyses with various conventional AdaBoost algorithms to confirm the efficiency of the hand region detection algorithm proposed in this paper.

키워드

참고문헌

  1. H. I. Suk, and B. H. Sin, "Dynamic Bayesian Network based Two-Hand Gesture Recognition", Journal of KIISE : Software and Applications, Vol.35, No.4, 2008.
  2. M. K. Bhuyan, D. R. Neog and M. K. Kar, "Fingertip Detection for Hand Pose Recognition", International Journal on Computer Science and Engineering (IJCSE), Vol.4 No.3, pp.501-511, March, 2012.
  3. M. S. Park, Md. M. Hasan, J. M. Kim and O. S. Chae, "Hand Detection and Tracking Using Depth and ColorInformation", IPCV'12, Vol.2, pp.779-785, 2012.
  4. M. Van den Bergh, and L. Van Gool, "Combining RGB and ToF Cameras for Real-time 3D Hand Gesture Interaction", 2011 IEEE Workshop on Application of Computer Vision (WACV), pp.66-72, January, 2011.
  5. P. Trindade, J. Lobo and J. P. Barreto, "Hand gesture recognition using color and depth images enhanced with hand angular pose data", IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp.71-76, September 13-15, 2012.
  6. Z. Mo, U. Neumann, "Real-time Hand Pose Recognition Using Low-Resolution Depth Images", Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), Vol.2, pp.1499-1505, 2006.
  7. X. Liu and K. Fujimura, "Hand gesture recognition using depth data", Proc. 6th. International Conf. on Automatic Face and Gesture Recognition, pp.529-534, Seoul, Korea, 2004.
  8. S. Malassiotis, M.G. Strintzis, "Real-time hand posture recognition using range data", Image and Vision Computing, Vol.26, Issue 7, pp.1027-1037, 2 July, 2008. https://doi.org/10.1016/j.imavis.2007.11.007
  9. P. Suryanarayan, "Dynamic Hand Pose Recognition using Depth Data", In 2010 International Conference on Pattern Recognition, pp.3105-3108, 2010.
  10. P. Viola and M. Jones, "Robust Real-time Face Detection", International Journal of Computer Vision Vol.57, No.2, pp.137-154, 2004 https://doi.org/10.1023/B:VISI.0000013087.49260.fb
  11. J. Sung-il, W. Sun-hee, C. Hyung-il, "Real-time Hand Region Detection and Tracking using Depth Information", KIPS Transactions on Software and Data Engineering, Vol.1, No.3, pp.177-186, 2012. https://doi.org/10.3745/KTSDE.2012.1.3.177
  12. J. Friedman, T. Hastie, R. Tibshirani, "Additive logistic regression : a statistical view of boosting", Technical report, Department of Statistics, Sequoia Hall, Stanford University, 1998.

피인용 문헌

  1. The I-MCTBoost Classifier for Real-time Face Detection in Depth Image vol.19, pp.3, 2014, https://doi.org/10.9708/jksci.2014.19.3.025