Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.313-316
/
2018
최근 미디어의 생성 및 소비 기술의 발전으로 몰입도 있는 콘텐츠에 대한 수요가 증가하고 있다. View Interpolation 기술은 두 개의 좌/우 영상을 기반으로 하여 두 영상의 중간 시점에 해당하는 영상을 생성해내는 기술이다. 먼저 Depth Hole Filling Module을 이용하여 좌/우 영상 및 그에 대응하는 깊이 지도를 입력으로 받아 깊이 지도에 존재하는 오류를 검출하고, 보정한다. 깊이 지도의 오류 보정이 완료되면, 해당 데이터를 각각 Feature Matching Module 및 Layer Dividing Module로 전달한다. Feature Matching Module은 실사 영상 내의 특징점들을 검출하고, 두 영상 내 특징점을 매칭하는 역할을 수행하며, Layer Dividing Module은 깊이 값을 기반으로 영상의 Layer를 분할한다. Feature Matching Module에서 특징점의 매칭이 완료되면, 특징점의 영상 내 좌표 및 해당 좌표에서의 깊이 값을 Distance Estimating Module로 전달한다. Distance Estimating Module은 전달받은 특징점의 좌표 및 해당 좌표에서의 깊이 값을 기반으로 전체 깊이 값에서의 이동도를 계산한다. 이와 같이 이동도의 계산 및 Layer 분할이 완료되면, 각 Layer를 이동도에 기반하여 이동시키고, 이동된 Layer들을 포개어 배치함으로써 View interpolation을 완성한다.
This paper proposes a depth image generation algorithm of stereo images using a deep learning model composed of a CNN (convolutional neural network). The proposed algorithm consists of a feature extraction unit which extracts the main features of each parallax image and a depth learning unit which learns the parallax information using extracted features. First, the feature extraction unit extracts a feature map for each parallax image through the Xception module and the ASPP(Atrous spatial pyramid pooling) module, which are composed of 2D CNN layers. Then, the feature map for each parallax is accumulated in 3D form according to the time difference and the depth image is estimated after passing through the depth learning unit for learning the depth estimation weight through 3D CNN. The proposed algorithm estimates the depth of object region more accurately than other algorithms.
This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.14-17
/
2020
단안 영상에서의 깊이 추정은 주어진 시점에서 촬영된 2 차원 영상으로부터 객체까지의 3 차원 거리 정보를 추정하는 것이다. 최근 딥러닝 기반으로 단안 RGB 영상에서 깊이 정보 추정에 유용한 특징 맵을 추출하고 이를 이용해서 깊이를 추정하는 모델들이 기존 방법들의 성능을 넘어서면서 관련된 연구가 활발히 진행되고 있다. 또한 Attention Model 과 같이 특정 특징 맵의 채널 혹은 공간을 강조하여 전체적인 네트워크의 성능을 개선하는 연구가 소개되었다. 본 논문에서는 깊이 정보 추정을 위해 사용되는 특징 맵을 강조하기 위해서 Attention Model 을 추가한 AutoEncoder 기반의 깊이 추정 네트워크를 제안하고 적용 부분에 따른 네트워크의 깊이 정보 추정 성능을 평가 및 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.454-455
/
2012
깊이 카메라에서 입력 받은 사용자의 얼굴 데이터에 morphable 모델을 fitting하여 실제 얼굴과 가까운 3D 얼굴 모델을 생성하기 위해서는 먼저 깊이 영상으로부터의 정확한 얼굴 영역 추출이 필요하다. 이를 위해 얼굴의 특징점을 기반으로 얼굴 영역 추출을 시도한다. 먼저 원본 깊이 영상을 보정하고, 컬러 영상으로부터 얼굴과 눈, 코의 영역을 탐색한 후 이를 깊이 영상에 대응시켜 눈, 코, 턱의 3차원 위치를 계산한다. 이렇게 결정된 얼굴의 주요 특징점들을 시작으로 영역을 확장함으로써 영상의 배경으로부터 얼굴 영역을 분리한다.
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2006.06a
/
pp.246-250
/
2006
얼굴의 중요한 특징부분을 잘 나타내는 깊이 에지 정보를 사용하면 표정과 조명변화로 인한 얼굴 픽셀의 밝기 값 변화에 대해 강인한 특징벡터를 생성할 수 있다. 본 논문에서는 깊이 에지(depth edge)를 이용한 새로운 특징벡터를 제안하고 그 유용성에 대하여 실험하였다. 새롭게 제안한 특징벡터는 얼굴의 깊이 에지 영상을 수평과 수직 방향으로 투영하여 얻어지는 에지 강도 히스토그램을 이용하기 때문에 얼굴의 움직임으로 인한 변형에 영향을 받지 않는다. 또한, 실시간 검출과 인식이 매우 용이하다. 제안한 깊이 에지 기반 특징벡터와 백색광 영상의 픽셀 값 기반 특징벡터에 대해 부공간 투영기반의 얼굴인식 알고리즘을 적용하여 성능을 비교 평가하였다. 실험 결과, 얼굴의 깊이 에지에 기반한 얼굴인식이 기존의 백색광만을 이용한 방법에 비해 높은 인식성능을 보였다
Jo, Cheol-Yong;Kim, Je-Dong;Jang, Sung-Eun;Choi, Chang-Yeol;Kim, Man-Bae
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.11a
/
pp.87-90
/
2009
영상의 깊이 정보를 추출하는 것은 매우 어려운 연구이다. 다양한 유형의 영상 구조의 분석이 필요하지만 많은 경우에 주관적인 판단의 도움이 필요하다. 본 논문에서는 로스 텍스처 필터를 기반으로 정지 영상의 깊이를 자동으로 생성하는 방법을 제안한다. 로스 텍스처 필터는 단안 비전에서 3D 깊이를 얻기 위한 방법으로 활용되었는데, 실제 2D 영상에서 깊이를 예측하기 위해 텍스처 편차, 텍스처 기울기, 색상 등을 활용한다. 로스 필터는 $1{\times}5$ 벡터로부터 콘볼루션을 이용하여, 20여개의 $5{\times}5$ 콘볼루션 필터가 구해지는데, 영상에 필터를 적용하여 로스 에너지를 계산한다. 구해진 에너지를 깊이 맵으로 변환하고, 깊이 맵에서 특징 점을 구하고, 특징 점들로부터 델러노이 삼각화를 이용하여 삼각형 깊이 메쉬를 얻는다. 구해진 깊이 맵의 성능을 측정하기 위해 카메라 시점을 변경하면서 영상의 3D 구조를 분석하였으며, 입체영상을 생성하여 3D 입체 시청 결과를 분석하였다. 실험에서는 로스 텍스처 필터를 이용하는 깊이 생성 방법이 좋은 효과를 얻는 것을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.3
/
pp.29-35
/
2010
This paper discusses a method that can enhance the exactness of depth estimation of an image by PCA(Principle Component Analysis) based on feature reduction through learning algorithm. In estimation of the depth of an image, hyphen such as energy of pixels and gradient of them are found, those selves and their relationship are used for depth estimation. In such a case, many features are obtained by various filter operations. If all of the obtained features are equally used without considering their contribution for depth estimation, The efficiency of depth estimation goes down. This paper proposes a method that can enhance the exactness of depth estimation of an image and its processing speed is considered as the contribution factor through PCA. The experiment shows that the proposed method(30% of an feature vector) is more exact(average 0.4%, maximum 2.5%) than using all of an image data in depth estimation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.348-350
/
2013
본 논문에서는 깊이영상의 특징을 이용하여 깊이영상에 보다 적합한 움직임 예측방법에 대한 방식을 제안한다. 기존 컬러영상 기반으로 제안되었던 대부분의 움직임 예측 방법들이 깊이영상에 적용할 경우 local minimum 에 빠지게 되어 이에 따른 압축 성능 저하가 있음을 확인하였다. 본 논문에서는 이러한 문제점들이 깊이영상의 오브젝트 경계 영역에서 나타나게 됨을 분석하며, 이러한 문제점을 해결하기 위해 깊이영상의 경계 영역에 대해 feature matching 방식을 이용한 full search 방식을 제안한다. 실험적인 결과는 제안방식이 기존 full search 방식과 비교하여 성능은 비슷하게 유지한 채 복잡도를 크게 개선할 수 있음을 보여준다.
사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.