DOI QR코드

DOI QR Code

Investigation of Electronic Structures of TCr2O4 (T = Fe, Co, Ni) Spinel Oxides by Employing Soft X ray Synchrotron Radiation Spectroscopy

연 X선 방사광 분광법을 이용한 TCr2O4(T = Fe, Co, Ni) 스피넬 산화물의 전자구조 연구

  • Kim, Hyun Woo (Department of Physics, The Catholic University of Korea) ;
  • Hwang, Jihoon (Department of Physics, The Catholic University of Korea) ;
  • Kim, D.H. (Department of Physics, The Catholic University of Korea) ;
  • Lee, Eunsook (Department of Physics, The Catholic University of Korea) ;
  • Kang, J.S. (Department of Physics, The Catholic University of Korea)
  • Received : 2013.09.23
  • Accepted : 2013.10.21
  • Published : 2013.10.31

Abstract

The electronic structures of $TCr_2O_4$ (T = Fe, Co, Ni) spinel oxides have been investigated by employing synchrotron radiation-based soft X ray absorption spectroscopy (XAS). The measured 2p XAS spectra of transition-metal ions reveal that Cr ions are trivalent ($Cr^{3+}$), and all the T (T = Fe, Co, Ni) ions are divalent ($Fe^{2+}$, $Co^{2+}$, $Ni^{2+}$). It is also found that most of T (T = Fe, Co, Ni) ions occupy the A sites under the tetrahedral symmetry, while Cr ions occupy mainly the B sites under the octahedral symmetry. These findings show that the structures of $TCr_2O_4$ (T = Fe, Co, Ni) are very close to the normal spinel structures. Based on these findings, it is expected that Jahn-Teller (JT) effects are important in $FeCr_2O_4$ and $NiCr_2O_4$. In contrast, $CoCr_2O_4$ maintains the cubic structure without having the JT distortion since both $Cr^{3+}$ and $Co^{2+}$ ions are non-JT ions. This work suggests that the antiferromagnetic interaction between $Cr^{3+}$ and $T^{2+}$ ions plays an important role in determining the magnetic properties of $TCr_2O_4$ (T = Fe, Co, Ni).

이 연구에서는 방사광 연 X선 광흡수 분광법(soft x-ray absorption spectroscopy: XAS)을 이용하여 $TCr_2O_4$(T = Fe, Co, Ni) 스피넬 산화물들의 전자 구조를 연구하였다. 전이금속 이온들의 2p 준위의 흡수에 의한 XAS 측정으로부터 T(T = Fe, Co, Ni) 이온들의 원자가는 공통적으로 2가($T^{2+}$)이며, Cr 이온의 원자가는 3가 ($Cr^{3+}$) 임을 발견하였다. 그리고 T 이온들은 정사면체 대칭성을 가진 A 사이트에 주로 위치하고, Cr 이온은 정팔면체 대칭성을 가진 B 사이트에 주로 위치함을 알 수 있었는데, 이러한 발견을 통하여 $TCr_2O_4$는 정상 스피넬에 가까운 구조를 가지고 있다고 결론지을 수 있다. 또한 $FeCr_2O_4$$NiCr_2O_4$에서는 얀-텔러 변형이 중요한 역할을 하지만, $CoCr_2O_4$는 얀-텔러 변형이 없는 입방체 구조를 유지하는 원인을 알 수 있었다. 그러므로 $TCr_2O_4$에서 $Cr^{3+}$ 상태의 이온들과 $T^{2+}$ 상태의 이온들 간의 반강자성 결합이 이 산화물들의 자성 특성을 결정하는데 중요한 역할을 한다고 생각된다.

Keywords

References

  1. P. G. Radaelli, New J. Phys. 7, 53 (2005). https://doi.org/10.1088/1367-2630/7/1/053
  2. C. L. Zhang, S. Yeo, Y. Horibe, Y. J. Choi, S. Guha, M. Croft, and S.-W. Cheong, Appl. Phys. Lett. 90, 133123 (2007). https://doi.org/10.1063/1.2717568
  3. K. Singh, A. Maignan, C. Simon, and C. Martin, Appl. Phys. Lett. 99, 172903 (2011). https://doi.org/10.1063/1.3656711
  4. I. Kim., Y. S. Oh, Y. Liu, S. H. Chun, J.-S. Lee, K.-T. Ko, J.-H. Park, J.-H. Chung, and K. H. Kim, Appl. Phys. Lett. 94, 042505 (2009). https://doi.org/10.1063/1.3076102
  5. S. Tiwari and D. Sa, J. Phys.: Condens. Matter 22, 225903 (2010). https://doi.org/10.1088/0953-8984/22/22/225903
  6. H. Ishibashi and T. Tasumi, J. Magn. Magn. Mater. 310, e610 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1131
  7. K. Tomiyasu and I. Kagomiya, J. Phys. Soc. Jpn. 73, 2539 (2004). https://doi.org/10.1143/JPSJ.73.2539
  8. K. Tomiyasu, H. Hiraka, K. Ohoyama, and K. Yamada, J. Phys. Soc. Jpn. 77, 124703 (2008). https://doi.org/10.1143/JPSJ.77.124703
  9. S. Bordacs, D. Varjas, I. Kezsmarki, G. Mihaly, L. Baldassarre, A. Abouelsayed, C. A. Kuntscher, K. Ohgushi, and Y. Tokura, Phys. Rev. Lett. 103, 077205 (2009). https://doi.org/10.1103/PhysRevLett.103.077205
  10. 방사광과학입문, 이동녕, 신현준, 청문각 (2002).
  11. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990). https://doi.org/10.1103/PhysRevB.42.5459
  12. G. van der Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992). https://doi.org/10.1088/0953-8984/4/16/019
  13. J.-S. Kang, J. Hwang, D. H. Kim, E. Lee, W. C. Kim, C. S. Kim, H.-K. Lee, J.-Y. Kim, S. W. Han, S. C. Hong, Bongjae Kim, and B. I. Min, J. Appl. Phys. 113, 17E116 (2013). https://doi.org/10.1063/1.4793769
  14. C. Theil, J. Van Elp, and F. Folkmann, Phys. Rev. B 59, 7931 (1999). https://doi.org/10.1103/PhysRevB.59.7931
  15. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stohr, and R. L. White, Phys. Rev. B 64, 214422 (2001). https://doi.org/10.1103/PhysRevB.64.214422
  16. J.-Y. Kim, T. Y. Koo, and J.-H. Park, Phys. Rev. Lett. 96, 047205 (2006). https://doi.org/10.1103/PhysRevLett.96.047205
  17. J.-S. Kang, S. S. Lee, G. Kim, H. J. Lee, H. K. Song, Y. J. Shin, S. W. Han, C. Hwang, M. C. Jung, H. J. Shin, B. H. Kim, S. K. Kwon, and B. I. Min, Phys. Rev. B 76, 195122 (2007). https://doi.org/10.1103/PhysRevB.76.195122
  18. L. A. Montoro, M. Abbate, E. C. Almeida, and J. M. Rosolen, Chem. Phys. Lett. 309, 14 (1999). https://doi.org/10.1016/S0009-2614(99)00650-8
  19. T. Mizokawa, A. Fujimori, T. Arima, Y. Tokura, N. Mori, and J. Akimitsu, Phys. Rev. B 52, 13865 (1995). https://doi.org/10.1103/PhysRevB.52.13865